인터넷 컴퓨팅 환경의 변화, 새로운 서비스 출현, 그리고 지능화되어 가는 해커들의 다양한 공격으로 인한 규칙 기반 침입탐지시스템의 한계점을 극복하기 위해 기계학습 및 딥러닝 기술을 활용한 네트워크 이상 검출(NAD: Network Anomaly Detection)에 대한 관심이 집중되고 있다. NAD를 위한 대부분의 기존 기계학습 및 딥러닝 기술은 '정상'과 '공격'으로 레이블링된 훈련용 데이터 셋을 학습하는 지도학습 방법을 사용한다. 본 논문에서는 공격의 징후가 없는 일상의 네트워크에서 수집할 수 있는 레이블링이 필요 없는 데이터 셋을 이용하는 비지도학습 오토 엔코더(AE: AutoEncoder)를 활용한 NAD 적용 가능성을 제시한다. AE 성능을 검증하기 위해 NSL-KDD 훈련 및 시험 데이터 셋을 사용해 정확도, 정밀도, 재현율, f1-점수, 그리고 ROC AUC (Receiver Operating Characteristic Area Under Curve) 값을 보인다. 특히 이들 성능지표를 대상으로 AE의 층수, 규제 강도, 그리고 디노이징 효과 등을 분석하여 레퍼런스 모델을 제시하였다. AE의 훈련 데이터 셋에 대한 재생오류 82-th 백분위수를 기준 값으로 KDDTest+와 KDDTest-21 시험 데이터 셋에 대해 90.4%와 89% f1-점수를 각각 보였다.
1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.
누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.
인터넷 환경에서 월드 와이드 웹이 등장한 이후 웹을 통해 수많은 웹 페이지들이 생산됨에 따라 사용자가 원하는 정보를 검색하기 위한 다양한 형태의 검색 서비스가 여러 분야에서 개발되어 활용되고 있다. 특히 법령 검색은 사용자가 현재 자신이 처한 상황에 필요한 법령을 검색하여 법령에 대한 지식을 얻기 위한 창구로써 국민의 편의를 제공하기 위해 반드시 필요한 서비스 중 하나이다. 이에 법제처는 2009년부터 국민 누구나 편리하게 법령에 관련된 정보를 검색할 수 있도록 국가의 법령뿐만 아니라 행정규칙이나 판례 등 모든 법령정보를 검색할 수 있는 검색 서비스를 제공하고 있다. 하지만 현재까지의 검색엔진 기술은 기본적으로 사용자가 입력한 질의어를 문서에 포함하고 있는지의 여부에 따라 해당 문서를 검색 결과로 제시한다. 법령 검색 서비스 또한 해당 법령에 등장하는 키워드를 활용하여 사용자에게 검색 결과를 제공해주고 있다. 따라서 법제처의 이런 노력에도 불구하고 법령이 전문가의 시각에서 작성되었기 때문에 법에 익숙하지 않은 일반 사용자는 자신이 필요한 법령을 검색하기 어려운 한계점을 가지고 있다. 이는 일반적으로 법령에 사용되는 용어들과 일반 사용자가 실생활에 사용하는 단어가 서로 상이하기 때문에 단순히 키워드의 단순 매칭 형태의 검색엔진에서는 사용자들이 주로 사용하는 생활용어를 이용해서 원하는 법령을 검색할 수 없다. 본 연구에서는 법률용어에 관한 사전지식이 부족한 일반 사용자가 일상에서 주로 사용되는 생활용어를 이용하여 키워드 기반의 법령정보 검색 사이트에서 정확한 법령정보 검색이 가능하도록 생활용어와 법률용어 간의 대응관계를 탐색하고 이를 이용하여 법령을 검색할 수 있는 방법론을 제안하고자 한다. 우선 생활용어와 법률용어 간의 대응관계를 발견하기 위해 본 논문에서는 사용자들의 집단지성을 활용한다. 이를 위해 사용자들이 블로그의 분류 및 관리, 검색에 활용하기 위해 작성한 태그 정보를 이용하여 질의어인 생활용어와 관련된 태그들을 수집한다. 수집된 태그들은 K-means 군집분석 기법을 통해 태그들을 클러스터링하고, 생활용어와 가장 가까운 법률용어를 찾기 위한 평가 방법을 통해 생활용어에 대응될 수 있는 적절한 법률용어를 선택한다. 선택된 법률용어는 해당 생활용어와 명시적인 관계성이 부여되며, 이러한 생활용어와 법률용어와의 관계는 온톨로지 기반의 시소러스를 기술하기 위한 SKOS를 이용하여 표현된다. 이렇게 구축된 온톨로지는 사용자가 생활용어를 이용하여 검색을 수행할 경우 생활용어에 대응되는 적절한 법률용어를 찾아 법령 검색을 수행하고 그 결과를 사용자에게 제시한다. 본 논문에서 제시하고자 하는 방법론을 통해 법령 및 법률용어에 관련된 사전 지식이 없는 일반 사용자도 편리하고 효율적으로 법령을 검색할 수 있는 서비스를 제공할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.