• Title/Summary/Keyword: Rule-Based Model

Search Result 1,010, Processing Time 0.03 seconds

The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation (공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발)

  • Minseok, Lee;Jihyun, Oh;Cheonyoung, Kim;Jungho, Bae;Yongduk, Kim;Cheolkyu, Jee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

3-D Concrete Model Using Non-associated Flow Rule in Dilatant-Softening Region of Multi-axial Stress State (3차원 솔리드요소 및 비상관 소성흐름 법칙을 이용한 콘크리트의 응력해석)

  • Seong, Dae Jeong;Choi, Jung Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • Cohesive and frictional materials such as concrete and soil are pressure dependent. In general, failure criterion for such materials inclined with respect to positive hydrostatic axis in Haigh-Westergaard stress space. Consequently, inelastic volumetric strain always positive with associated flow rule. In this study, to overcome this shortcoming, non-associated flow rule which controls volumetric component of plastic flow is adopted. Numerical analysis based on a constitutive model using nonuniform hardening plasticity with five parameter failure criterion and non-associated flow rule has conducted to predict concrete behavior under multi-axial stress state and verified with experimental result.

Performance Evaluation of Decision Fusion Rules of Wireless Sensor Networks in Generalized Gaussian Noise (Generalized Gaussian Noise에서의 무선센서 네트워크의 Decision Fusion Rule의 성능 분석에 관한 연구)

  • Park, Jin-Tae;Koo, In-Soo;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • Fusion of decisions from multiple distributed sensor nodes is studied in this work. Based on the canonical parallel fusion model, we derive the optimal likelihood ratio based fusion rule with the assumptions of the generalized Gaussian noise model and the arbitrary fading channel. This optimal fusion rule, however, requires the complete knowledge of the channels and the detection performance of local sensor nodes. To mitigate these requirements and to provide near optimum performance, we derive suboptimum fusion rules by using high and low signal-to-noise ratio (SNR) approximations to the optimal fusion rule. Performance evaluation is conducted through simulations.

  • PDF

A FINITE-VISCOELASTIC CONTINUUM MODEL FOR RUBBER AND ITS FINITE ELEMENT ANALYSIS

  • Kim, Seung-Jo;Kim, Kyeong-Su;Cho, Jin-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.97-109
    • /
    • 1995
  • In this paper, a finite viscoelastic continuum model for rubber and its finite element analysis are presented. This finite viscoelatic model based on continuum mechanics is an extended model of Johnson and Wuigley's 1-D model. In this extended model, continuum based kinematic measures are rigorously defied and by using this kinematic measures, elastic stage law and flow rule are introduced. In kinematics, three configuration are introduced. In kinematics, three configuration are introduced. They are reference, current and virtual visco configurations. In elastic state law, it is assumed that at a certain time, there exists an elastic potential which describes the recoverable elastic energy. From this elastic potential, elastic state law is derived. The proposed flow rule is based on phenomenological observation. The flow rule gives precise relaxation response. In finite element approximation, mixed Lagrangian description is used, where total and similar method of updated Lagrangian descriptions are used together. This approach reduces the numerical job and gives simple nonlinear syatem of equations. To satisfy the incompressible condition, penalty-type modified Mooney-Rivlin energy function is adopted. By this method nearly incompressible condition is obtain the virtual visco configuration. For verification, uniaxial stretch tests are simulated for various stretch rates. The simulated results show good agreement with experiments. As a practical experiments. As a preactical example, pressurized rubber plate is simulated. The result shows finite viscoelastic effects clearly.

Rule-based Feature Model Validation Tool (규칙 기반 특성 모델 검증 도구)

  • Choi, Seung-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.105-113
    • /
    • 2009
  • The feature models are widely used to model the commonalities and variabilities among the products in the domain engineering phase of software product line developments. The findings and corrections of the errors or consistencies in the feature models are essential to the successful software product line engineering. The aids of the automated tools are needed to perform the validation of the feature models effectively. This paper describes the approach based on JESS rule-base system to validate the feature models and proposes the feature model validation tool using this approach. The tool of this paper validates the feature models in real-time when modeling the feature models. Then it provides the information on existence of errors and the explanations on causes of those errors, which allows the feature modeler to create the error-free feature models. This attempt to validate the feature model using the rule-based system is supposed to be the first time in this research field.

  • PDF

A Study of Query Processing Model to applied Meta Rule in 4-Level Layer based on Hybrid Databases (하이브리드 데이터베이스 기반의 4단계 레이어 계층구조에서 메타규칙을 적용한 질의어 수행 모델에 관한 연구)

  • Oh, Ryum-Duck
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.125-134
    • /
    • 2009
  • A biological data acquisition based on web has emerged as a powerful tool for allowing scientists to interactively view entries form different databases, and to navigate from one database to another molecular-biology database links. In this paper, the biological conceptual model is constructed hybrid biological data model to represent interesting entities in the data sources to applying navigation rule property for each biological data source based on four biological data integrating layers to control biological data. When some user's requests for application service are occurred, we can get the data from database and data source via web service. In this paper, we propose a query processing model and execution structure based on integrating data layers that can search information on biological data sources.

Control Strategy for Buck DC/DC Converter Based on Two-dimensional Hybrid Cloud Model

  • Wang, Qing-Yu;Gong, Ren-Xi;Qin, Li-Wen;Feng, Zhao-He
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1684-1692
    • /
    • 2016
  • In order to adapt the fast dynamic performances of Buck DC/DC converter, and reduce the influence on converter performance owing to uncertain factors such as the disturbances of parameters and load, a control strategy based on two-dimensional hybrid cloud model is proposed. Firstly, two cloud models corresponding to the specific control inputs are determined by maximum determination approach, respectively, and then a control rule decided by the two cloud models is selected by a rule selector, finally, according to the reasoning structure of the rule, the control increment is calculated out by a two-dimensional hybrid cloud decision module. Both the simulation and experiment results show that the strategy can dramatically improve the dynamic performances of the converter, and enhance the adaptive ability to resist the random disturbances, and its control effect is superior to that of the current-mode control.

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : 1. Formulation (일반 등방경화 구성관계에 대한 내재적인 음력적분 : 1. 정식화)

  • 오세붕;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.145-156
    • /
    • 1996
  • An implicit stress integration algorithm was formulated for implementing an aiusotorpic hardening constitutive model which has been based op the generalized isotropic hardening rule in nonlinear finite element analysis technique. the rate form of stress tensor was implicitly integrated using the generalized trapezoidal rule and the tangent stress-strain modulus was evaluated consistently with the nonlinear solution technique. As a result, it has been found that the nonlinear analysis with the anisotropic hardening constitutive model might be performed accurately and efficiently.

  • PDF