This study analyses the types, related operations, facilities, and causes of chemical accidents in Korea based on the RISCAD classification taxonomy. In addition, human error analysis was carried out employing different human error classification criteria. Explosion and fire were major accident types, and nearly half of the accidents occurred during maintenance operation. In terms of related facility, storage devices and separators were the two most frequently involved ones. Results of the human error-based analysis showed that latent human errors in management level are involved in many accidents as well as active errors in the field level. Action errors related to unsafe behavior leads to accidents more often compared with the checking behavior. In particular, actions missed and inappropriate actions were major problems among the unsafe behaviors, which implicates that the compliance with the work procedure should be emphasized through education/training for the workers and the establishment of safety culture. According to the analysis of the causes of the human error, the frequency of skill-based mistakes leading to accidents were significantly lower than that of rule-based and knowledge based mistakes. However, there was limitation in the analysis of the root causes due to limited information in the accident investigation report. To solve this, it is suggested to adopt advanced accident investigation system including the establishment of independent organization and improvement in regulation.
In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.
본 논문에서는 패턴분류문제를 해결하기 위한 새로운 무감독학습 신경망 및 경쟁학습 알고리즘을 제한한다. 제아하는 신경망은 입력 데이터의 군집을 분류하기 위한 거리측도로서 군집들 상호간의 상대유사도(relative similarity)를 기반으로 하고 있다. 이러한 까닭에 제안하는 신경망과 알고리즘을 상대유사 신경망 (relative similarity network; RSN)및 학습 알고리즘이라 이름한다. 상대유사도를 정의하고 가중벡터 학습 규칙을 구성함으로써, RSN의 구조를 설계하고 학습알고리즘을 구현하기 의한 의사코드를 기술한다. 일반적인 패턴분류에 RSN을 적용한 결과, 초기 학습률이 없음에도 불구하고 기존이 경쟁학습 신경망인 WTAdlsk SOM고 동등한 성능을 나타내었다. 반면 기존 경쟁학습 신경망의 분류성능이 저하되었던 군집이 경걔가 불분명한 패턴, 그리고 군집이 밀집도와 군집의 크기가 다른 패턴들에 대한 실험에서는 기존의 경쟁학습망보다 효과적인 분류결과를 나타내었다.
최근 산업 발전에 따라 철강 제품의 수요 증가와 함께 품질의 고급화에 대한 요구도 점차 증가하고 있는데, 이러한 수요자의 요구에 부응하기 위해 철강업계는 냉연 강판 표면결함검출기(surface defect detector; SDD)를 도입 운용하고 있다. 그러나 현재 국내 철강 제조업체들이 보유하고 있는 상용 SDD는 결함의 검출에는 매우 효율적이지만 결함의 분류에는 아직 만족할만한 성능을 보여주지 못하고 있다. 그 이유는 SDD가 결함 분류를 위해 채택한 분류표분류기(classification table; CT)는 시험 표본의 모든 특징값들이 분류표의 범위 내에 있을 때만 결함의 분류를 정확히 수행하기 때문에 결함 분류 정확도가 낮을 뿐 아니라, 분류 법칙의 설정을 작업자의 수작업에 의존하고 있어 현장 적용을 더욱 어렵게 하고 있다. 이러한 단점을 극복하기 위해 본 연구에서 학습 표본으로부터 확률밀도함수를 추정하고 여기에서 분류 법칙을 자동적으로 결정하는 방법을 제시하였고, 강화분류표분류기(enhanced classification table; ECT)와 확률신경회로망분류기(probabilistic neural network; PNN)를 새롭게 제안하여 이들 분류기를 실제적인 문제에 적용하였다. 그 결과 ECT와 PNN 모두 결함 분류 성능을 획기적으로 높일 수 있는 좋은 방법이며, 특히 PNN은 아주 구별하기 어려운 결함도 구별해내는 능력이 있을 뿐 아니라, 병렬 처리 능력을 가지고 있기 때문에 다량의 데이터를 실시간으로 처리해야 하는 경우에 적용할 수 있는 매우 효율적인 분류기임을 확인하였다.
한글과 같이 문자집합이 큰 조합 문자의 인식을 위해서는 문제공간을 줄여주는 유형분류가 큰 도움이 된다. 기존 연구들이 한글 구성원리에 치중하여 한글 유형을 정한 결과 복모음 문자에 대한 정확한 분류가 어려웠고 문자집합이 상대적으로 큰 종성 있는 문자들에 대한 세분류가 부족하여 문제공간의 분배에 어려움이 많았다. 본 논문에서는 이러한 문제들을 해결하고자 수평 투영 프로파일을 이용하여 안정적 추출이 가능한 횡모음을 우선 추출하고. 수평 투영 프로파일과 연결요소를 이용하여 종성 있는 문자들에 대하여 종성을 5가지 그룹 중 하나로 세분류 하는 유형분류 방법을 제안하였다. 기존의 유형분류 방법들이 유형간 크기 불균형을 갖는 6개 혹은 15개의 유형을 가진 반면에 제안한 방법은 균형 있고 안정적 분류가 가능한 19개의 유형을 갖는다. 한글 잦기순 1.000자에 대한 7개의 상용 글꼴자료를 사용하여 분류 시스템을 만들고 월간지에서 스캔(Scan)한 30.614자에 대한 유형 분류 실험을 통하여 제안한 방법이 다양한 글꼴과 큰 문자집합을 갖는 한글 문자의 유형분류에 효율적임을 확인하였다.
인터넷의 발달로 인하여 웹을 통한 문서 송수신이 많아지면서 이메일의 사용자도 기하급수적으로 늘어나고 있다. 또한 일반 사용자나 전자상거래에서 오가는 메일의 양도 갈수록 늘어나고 있다. 편리하다는 점을 이용해서 엄청난 양의 스팸 메일도 매일 같이 쏟아져 나오고 있다. 본 논문에서는 사용자 개인에 맞게 메일을 자동 관리해 주는 즉 개인화된 분류가 가능하고, 또 언제 어디서나 로그인이 가능한 웹 메일 기반인 웹 메일 필터링 에이전트(Web Mail Filtering Agent for Personalized Classification)를 제안한다. 새로운 메일이 오면, 먼저 사용자의 메일 처리과정을 일정 기간 관찰하여 각각 개인에 맞는 룰(Personal rule)을 형성하고, 만들어진 룰을 바탕으로 메시지를 자동 관리 즉 카테고리별 분류ㆍ저장 및 개인에게 불필요한 메일이나 스팸 메일을 삭제 해 주는 것이다. 또한 시스템의 정확도를 높이기 위해 동적 임계치를 이용한 베이지안 알고리즘을 적용하였다.
본 논문은 정수장에서 사용하는 응집제의 종류를 결정하기 위한 시스템 개발에 관한 내용이다. 정수장은 여러 단위 처리장으로 구성되며, 불순물을 제거하기 위하여 혼화지에서 응집제를 주입하여 침전을 시킨다. 현재까지 응집제 결정을 위해 Jar-test를 이용하는데, 이 방법은 사람의 주관적인 판단에 의존하므로 실험 오차가 발생할 수 있다. 특히 정수장의 자동화를 위한 시스템 개발에서 가장 큰 걸림돌로 작용하고 있다. 본 논문은 이러한 문제점을 해결하기 위하여 로드맵에 기초한 데이터마이닝 기법을 이용하여 응집제를 선택할 수 있는 제어기를 개발하였다. 제어 규칙은 클러스터링 기법으로 도출하였는데, 군집의 초기 값과 개수는 통계적 지수 값을 사용하여 결정하였다.
The ship surveyor makes a scheme of reasonable ship operation by examining whether the ship has been properly constructed in accordance with the rule of classification societies and international conventions or whether the facilities of the ship in operation meet the standard stipulated by law. Even though the ship surveyors of classification society generally consist of people who have the skill of design or operation of a ship, it takes a long time to train a surveyor to the maturity level. This paper describes the development of survey simulator based on virtual ship environment that enables the surveyor minimize trial and errors to survey the ships. By using VR(Virtual Reality) based survey simulator, surveyors possibly achieve improvement of competence in survey quality by means of safe and immersive training environment. In order to improve the usability and utility of the VR simulator, the ship 3D model has been generated using 3D CAD model for design and production in shipyard. Through this, we suggested the possibility of consistent use of 3D model as the digital twin of a ship.
International Journal of Internet, Broadcasting and Communication
/
제13권3호
/
pp.92-103
/
2021
With the continuous acceleration of economic and social development, people gradually pay attention to their health, improve their living environment, diet, strengthen exercise, and even conduct regular health examination, to ensure that they always understand the health status. Even so, people still face many health problems, and the number of chronic diseases is increasing. Recently, COVID-19 has also reminded people that public health problems are also facing severe challenges. With the development of artificial intelligence equipment and technology, medical diagnosis expert systems based on big data have become a topic of concern to many researchers. At present, there are many algorithms that can help computers initially diagnose diseases for patients, but they want to improve the accuracy of diagnosis. And taking into account the pathology that varies from person to person, the health diagnosis expert system urgently needs a new algorithm to improve accuracy. Through the understanding of classic algorithms, this paper has optimized it, and finally proved through experiments that the combined classification algorithm improved by latent factors can meet the needs of medical intelligent diagnosis.
이 논문에서는 비유사도-기반 분류(dissimilarity-based classifications: DBC)를 효율적으로 수행할 수 있는 차원 축소 방법들을 비교 평가한 실험 결과를 보고한다. DBC에선 분류를 위해 대상 물체를 측정한 결과 값들(특징 요소들의 집합)을 이용하는 대신에 각 대상 물체들 사이의 비유사도를 측정하여 분류한다. 현재 DBC와 관련된 이슈들 중의 하나는 대규모 데이터를 취급할 경우에 비유사도 공간의 차원이 고차원으로 되는 문제가 있다. 이 문제를 해결하기 위하여 현재 프로토타입 선택(prototype selection: PS)방법이나 차원 축소(dimension reduction: DR)방법을 이용하고 있다. PS는 전체 학습 데이터에서 프로토타입을 추출하여 비유사도 공간을 구성하는 방법이고, DR은 전체 학습 데이터로 먼저 비유사도 공간을 구성한 다음 이 공간의 차원을 축소하는 방법이다. 이 논문에서는 PS이나 DR 대신에, 학습 데이터에 대한 주성분 분석으로 적절한 차원의 고유 공간 (Eigen space: ES)을 구성한 다음, 이 고유 공간으로 매핑 된 벡터들 사이의 $l_p$-놈(norm) 거리를 비유사도 거리로 측정하여 이용하는 DBC를 제안한다. 인터넷에 공개된 인공 및 실세계 데이터를 이용하여 최 근방 이웃 분류규칙으로 ES에서 수행한 DBC의 분류 성능을 측정한 결과, 고유공간의 차원을 적절하게 선정하였을 경우 PS와 DR를 이용한 DBC보다 분류 성능이 더 향상되었음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.