• Title/Summary/Keyword: Rule-Based Classification

Search Result 330, Processing Time 0.022 seconds

Rhythm Classification of ECG Signal by Rule and SVM Based Algorithm (규칙 및 SVM 기반 알고리즘에 의한 심전도 신호의 리듬 분류)

  • Kim, Sung-Oan;Kim, Dae-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.43-51
    • /
    • 2013
  • Classification result by comprehensive analysis of rhythm section and heartbeat unit makes a reliable diagnosis of heart disease possible. In this paper, based on feature-points of ECG signals, rhythm analysis for constant section and heartbeat unit is conducted using rule-based classification and SVM-based classification respectively. Rhythm types are classified using a rule base deduced from clinical materials for features of rhythm section in rule-based classification, and monotonic rhythm or major abnormality heartbeats are classified using multiple SVMs trained previously for features of heartbeat unit in SVM-based classification. Experimental results for the MIT-BIH arrhythmia database show classification ratios of 68.52% by rule-based method alone and 87.04% by fusion method of rule-based and SVM-based for 11 rhythm types. The proposed fusion method is improved by about 19% through misclassification improvement for monotonic and arrangement rhythms by SVM-based method.

A Rule-based Urban Image Classification System for Time Series Landsat Data

  • Lee, Jin-A;Lee, Sung-Soon;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.637-651
    • /
    • 2011
  • This study presents a rule-based urban image classification method for time series analysis of changes in the vicinity of Asan-si and Cheonan-si in Chungcheongnam-do, using Landsat satellite images (1991-2006). The area has been highly developed through the relocation of industrial facilities, land development, construction of a high-speed railroad, and an extension of the subway. To determine the yearly changing pattern of the urban area, eleven classes were made depending on the trend of development. An algorithm was generalized for the rules to be applied as an unsupervised classification, without the need of training area. The analysis results show that the urban zone of the research area has increased by about 1.53 times, and each correlation graph confirmed the distribution of the Built Up Index (BUI) values for each class. To evaluate the rule-based classification, coverage and accuracy were assessed. When Optimal allowable factor=0.36, the coverage of the rule was 98.4%, and for the test using ground data from 1991 to 2006, overall accuracy was 99.49%. It was confirmed that the method suggested to determine the maximum allowable factor correlates to the accuracy test results using ground data. Among the multiple images, available data was used as best as possible and classification accuracy could be improved since optimal classification to suit objectives was possible. The rule-based urban image classification method is expected to be applied to time series image analyses such as thematic mapping for urban development, urban development, and monitoring of environmental changes.

Rule set of object-oriented classification using Landsat imagery in Donganh, Hanoi, Vietnam

  • Thu, Trinh Thi Hoai;Lan, Pham Thi;Ai, Tong Thi Huyen
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.521-527
    • /
    • 2013
  • Rule set is an important step which impacts significantly on accuracy of object-oriented classification result. Therefore, this paper proposes a rule set to extract land cover from Landsat Thematic Mapper (TM) imagery acquired in Donganh, Hanoi, Vietnam. The rules were generated to distinguish five classes, namely river, pond, residential areas, vegetation and paddy. These classes were classified not only based on spectral characteristics of features, but also indices of water, soil, vegetation, and urban. The study selected five indices, including largest difference index max.diff; length/width; hue, saturation and intensity (HSI); normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) based on membership functions of objects. Overall accuracy of classification result is 0.84% as the rule set is used in classification process.

Rule-Based Classification Analysis Using Entropy Distribution (엔트로피 분포를 이용한 규칙기반 분류분석 연구)

  • Lee, Jung-Jin;Park, Hae-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.527-540
    • /
    • 2010
  • Rule-based classification analysis is widely used for massive datamining because it is easy to understand and its algorithm is uncomplicated. In this classification analysis, majority vote of rules or weighted combination of rules using their supports are frequently used in order to combine rules. We propose a method to combine rules by using the multinomial distribution in this paper. Iterative proportional fitting algorithm is used to estimate the multinomial distribution which maximizes entropy constrained on rules' support. Simulation experiments show that this method can compete with other well known classification models in the case of two similar populations.

Analyzing the Applicability of Greenhouse Detection Using Image Classification (영상분류에 의한 하우스재배지 탐지 활용성 분석)

  • Sung, Jeung Su;Lee, Sung Soon;Baek, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Jeju where concentrates on agriculture and tourism, conversion of outdoor culture into cultivation under structure happens actively for the purpose of increasing profit so continuous examination on house cultivation area is very important for this region. This paper is to suggest the effective image classification method using high resolution satellite image to detect the greenhouse. We carried out classification of greenhouse using the supervised classification and rule-based classification method about Formosat-2 images. Connecting result of two classification try to find accuracy improvement for greenhouse detection. Results about each classification method were calculated the accuracy by comparing with the result of visual detection. As a result, mahalanobis distance among the supervised methods was resulted in the highest detection. Also, it could be checked that detection accuracy was improved by tying with result of supervised method and result of rule-based classification. Therefore, it was expected that effective detection of greenhouse would be feasible if henceforward further study is performed in the process of connecting supervised classification and rule-based classification.

On an Equal Mean Quadratic Classification Rule With Unknown Prior Probabilities

  • Kim, Hea-Jung;Inada, Koichi
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.126-139
    • /
    • 1995
  • We describe a formal approach to the construction of optimal classification rule for the two-group normal classification with equal population mean problem. Based on the utility function of Bernardo, we suggest a balanced design for the classification and construct the optimal rule under the balanced design condition. The rule is characterized by a constrained minimization of total risk of misclassification, the constraint of which is constructed by the process of equation between expected utilities of the two group conditional densities. The efficacy of the suggested rule is examined through numerical studies. This indicates that, in case little is known about the relative population sizes, dramatic gains in accuracy of classification result can be achieved.

  • PDF

Solder Joint Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method (신경회로망과 퍼지 규칙을 이용한 인쇄회로 기판상의 납땜 형상검사)

  • Ko, Kuk-Won;Cho, Hyung-Suck;Kim, Jong-Hyeong;Kim, Sung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.710-718
    • /
    • 2000
  • In this paper we described an approach to automation of visual inspection of solder joint defects of SMC(Surface Mounted Components) on PCBs(Printed Circuit Board) by using neural network and fuzzy rule-based classification method. Inherently the surface of the solder joints is curved tiny and specular reflective it induces difficulty of taking good image of the solder joints. And the shape of the solder joints tends to greatly vary with the soldering condition and the shapes are not identical to each other even though the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their qualities. Neural network and fuzzy rule-based classification method is proposed to effi-ciently make human-like classification criteria of the solder joint shapes. The performance of the proposed approach is tested on numerous samples of commercial computer PCB boards and compared with the results of the human inspector performance and the conventional Kohonen network.

  • PDF

Fuzzy Classification Rule Learning by Decision Tree Induction

  • Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.44-51
    • /
    • 2003
  • Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.

Rule Weight-Based Fuzzy Classification Model for Analyzing Admission-Discharge of Dyspnea Patients (호흡곤란환자의 입-퇴원 분석을 위한 규칙가중치 기반 퍼지 분류모델)

  • Son, Chang-Sik;Shin, A-Mi;Lee, Young-Dong;Park, Hyoung-Seob;Park, Hee-Joon;Kim, Yoon-Nyun
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • A rule weight -based fuzzy classification model is proposed to analyze the patterns of admission-discharge of patients as a previous research for differential diagnosis of dyspnea. The proposed model is automatically generated from a labeled data set, supervised learning strategy, using three procedure methodology: i) select fuzzy partition regions from spatial distribution of data; ii) generate fuzzy membership functions from the selected partition regions; and iii) extract a set of candidate rules and resolve a conflict problem among the candidate rules. The effectiveness of the proposed fuzzy classification model was demonstrated by comparing the experimental results for the dyspnea patients' data set with 11 features selected from 55 features by clinicians with those obtained using the conventional classification methods, such as standard fuzzy classifier without rule weights, C4.5, QDA, kNN, and SVMs.

A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area (수도권 도시개발 분석을 위한 규칙기반 영상분류)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.43-54
    • /
    • 2011
  • This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.