US national research laboratories developed the first Vital Area Identification (VAI) method for the physical protection of nuclear power plants that is based on Event Tree Analysis (ETA) and Fault Tree Analysis (FTA) techniques in 1970s. Then, Korea Atomic Energy Research Institute proposed advanced VAI method that takes advantage of fire and flooding Probabilistic Safety Assessment (PSA) results. In this study, in order to minimize the burden and difficulty of VAI, (1) a set of streamlined VAI rules were developed, and (2) this set of rules was applied to PSA fault tree and event tree at the initial stage of VAI process. This new rule-based VAI method is explained, and its efficiency and correctness are demonstrated throughout this paper. This new rule-based VAI method drastically reduces problem size by (1) performing PSA event tree simplification by applying VAI rules to the PSA event tree, (2) calculating preliminary prevention sets with event tree headings, (3) converting the shortest preliminary prevention set into a sabotage fault tree, and (4) performing usual VAI procedure. Since this new rule-based VAI method drastically reduces VAI problem size, it provides very quick and economical VAI procedure. In spite of an extremely reduced sabotage fault tree, this method generates identical vital areas to those by traditional VAI method. It is strongly recommended that this new rule-based VAI method be applied to the physical protection of nuclear power plants and other complex safety-critical systems such as chemical and military systems.
규칙 기반 시스템은 업무 담당자의 비즈니스 노하우 및 전문 지식에 대한 처리는 물론, 기업의 비즈니스 로직까지 처리하여 새로운 비즈니스 모델 변화와 개선요구에 대해 즉각적으로 대응할 수 있는 규칙 기반 추론 엔진으로, 최근 다양한 산업으로의 적용이 시도되고 있다. 이에 이 논문에서는 규칙 기반 시스템 적용 사례의 일환으로, 다양한 소비자 니즈, 수많은 종류의 상품, 그리고 시시각각 변하는 대내외 환경에 민감하게 영향을 받는 보험 산업에서의 효율적인 보험 상품 추천과 설계를 위한 규칙 기반의 보험 상품 추천 및 설계 시스템을 설계하고 구현하고자 한다. 개발된 시스템은 퍼지추론 과정을 통해 고객의 개인정보와 기존 가입고객의 가입정보를 이용하여 보험상품 설계를 원하는 고객에게 맞춤형 보험상품을 추천하고 설계하고자 한다. 이러한 시도는 향후 보험 산업에 있어서 상품에 대한 다양한 고객들의 니즈를 즉각적으로 판단하고 대응하여 보다 정확하고, 고객 개개인의 욕구에 맞는 맞춤형 상품추천 및 설계를 위한 핵심 기술로서 자리 잡을 수 있을 것으로 기대된다.
PA(postero-anterior) and AP(antero-posterior) chest projections are the most sought-after types of all kinds of projections. But if a radiological technologist puts wrong information about the position in the computer, the orientation of left and right side of an image would be reversed. In order to solve this problem, we utilized CNN(convolutional neural network) which has recently utilized a lot for studies of medical imaging technology and rule-based system. 70% of 111,622 chest images were used for training, 20% of them were used for testing and 10% of them were used for validation set in the CNN experiment. The same amount of images which were used for testing in the CNN experiment were used in rule-based system. Python 3.7 version and Tensorflow r1.14 were utilized for data environment. As a result, rule-based system had 66% accuracy on evaluating whether the orientation reversal on chest x-ray image. But the CNN had 97.9% accuracy on that. Being overcome limitations by CNN which had been shown on rule-based system and shown the high accuracy can be considered as a meaningful result. If some problems which can occur for tasks of the radiological technologist can be separated by utilizing CNN, It can contribute a lot to optimize workflow.
본 연구는 MMO(Massive1y Multi-player Online) 게임플레이 경험에 관한 게이머의 행동을 체계적으로 코드화 할 수 있는 분석적 틀을 개발하고 문제해결과정으로서의 게임플레이를 실증적으로 규명하는데 목적이 있다. MMO 게임플레이 경험에 관한 분석틀은 모델휴먼프로세서, 내용기반연구, 절차기반연구를 고찰하여 전체적인 틀을 구축하였다. 게임플레이에 관한 구체적인 행동과 내용은 MMO 게임에 관한 실증적 실험 진행과 동시조서 분석을 통하여 도출되었다. 그 결과를 통해서 MMO 게임플레이 행동은 운동, 지각 기능 표상 시뮬레이션, 법칙 행동(휴리스틱스, 법칙적용, 법칙초월)들로 분류되어 MMO 게임에 적합한 새로운 분석틀이 개발되었다. 본 실험결과 시행착오를 통해 게임의 법칙을 발견하는 '휴리스틱행동' 해당 법칙을 따르는 '법칙적용행동', 해당법칙을 초월하는 '법칙초월행동'이 발견되었다. 특히 문제공간에서 '법칙적용행동'과 '법칙초월행동'이 시행되는 두 가지 법칙공간이 발견되었다. 새로 발견된 법칙공간과 게임플레이 패턴은 MMO 게임의 레벨디자인 요소에 해당하는 지역특성, 몬스터의 속성, 아이템, 스킬 등을 결정하는데 중요한 기초를 마련한다. 그래서 본 연구결과는 MMO 게임의 품질을 향상하기 위한 게임디자인 방법론에 중요한 시사점을 제공할 것이다.
심전도 신호의 신뢰성 있는 진단을 위해서는 높은 분류 정확도와 함께 낮은 오분류 성능이 중요하며, 특히 비정상을 정상으로 진단하는 것은 심검자에게 치명적인 문제로 귀결될 수 있다. 본 논문에서는 임상 진단 기준을 반영하는 규칙기반 분류 알고리즘을 이용하여 비정상 리듬을 검출 및 분류하는 방법을 제안한다. 규칙기반 분류는 리듬 구간의 특징에 대한 규칙 베이스를 이용하여 리듬 유형을 분류하도록 하며, 이 때 규칙 베이스는 임상 및 내과 분야의 심전도 전문 임상 자료에 기반한 본 논문의 기준표에 따라 구성된다. MIT-BIH 부정맥 데이터베이스를 이용한 제안 방법의 실험을 통하여 정상동조율, 박동조율, 및 다양한 비정상 리듬에 대한 리듬 유형의 분류가 가능함을 확인하였으며, 특히 비정상 리듬 검출 측면에서는 오분류가 전혀 발생되지 않는 결과를 보였다.
Intrusion detection is very important for network situation awareness. While a few methods have been proposed to detect network intrusion, they cannot directly and effectively utilize semi-quantitative information consisting of expert knowledge and quantitative data. Hence, this paper proposes a new detection model based on a directed acyclic graph (DAG) and a belief rule base (BRB). In the proposed model, called DAG-BRB, the DAG is employed to construct a multi-layered BRB model that can avoid explosion of combinations of rule number because of a large number of types of intrusion. To obtain the optimal parameters of the DAG-BRB model, an improved constraint covariance matrix adaption evolution strategy (CMA-ES) is developed that can effectively solve the constraint problem in the BRB. A case study was used to test the efficiency of the proposed DAG-BRB. The results showed that compared with other detection models, the DAG-BRB model has a higher detection rate and can be used in real networks.
A rule weight -based fuzzy classification model is proposed to analyze the patterns of admission-discharge of patients as a previous research for differential diagnosis of dyspnea. The proposed model is automatically generated from a labeled data set, supervised learning strategy, using three procedure methodology: i) select fuzzy partition regions from spatial distribution of data; ii) generate fuzzy membership functions from the selected partition regions; and iii) extract a set of candidate rules and resolve a conflict problem among the candidate rules. The effectiveness of the proposed fuzzy classification model was demonstrated by comparing the experimental results for the dyspnea patients' data set with 11 features selected from 55 features by clinicians with those obtained using the conventional classification methods, such as standard fuzzy classifier without rule weights, C4.5, QDA, kNN, and SVMs.
본 논문에서는 퍼지규칙 기반 시스템에서 규칙 내에 포함된 불완전한 속성을 제거하여 보다 간략화 된 규칙으로도 분류할 수 있는 방법을 제안하였다. 제안한 방법에서는 규칙 내에 포함된 불완전한 속성을 제거하기 위해 러프집합을 이용하였고 보다 명확한 분류를 위해 출력부 소속함수의 적합도가 최대인 속성들을 추출하였다. 또한 모의실험에서는 제안된 방법의 타당성을 검증하기 위해 rice taste data를 기반으로 규칙 감축 전 퍼지 max-product 결과와 규칙 감축 후 퍼지 max-product 결과를 비교하였다. 그 결과, 규칙 감축 전 max-product 결과와 규칙 감축 후 max-product 결과가 정확히 일치함을 볼 수 있었고, 보다 객관적인 검증을 위해 비퍼지화 된 실수 구간을 비교하였다.
Cognition and control of grinding trouble occurring during the grinding process are classified into a quantitative knowledge which depends on experimental data and qualitative knowledge which relies on skillful engineers. Grinding operations include a large number of functional parameters, since there are several ways of coping with grinding trouble. One is the qualitative method which depends on empirical knowledge utilizing the skilful experts from the workshop, the other is the quantitative method which utilizes the experimental data obtained by sensor. But, they are all difficult to accomplish from the grinding trouble-shooting system. The reason is that grinding troubles are not easily controlled in the quantitative method, and therefore, trouble-shooting has mainly relied on the knowledge of skilful engineers. Thus, there is an important issue of how a grinding trouble-shooting system can be designed and what knowledge is utilized among the large amount of grinding trouble information. In this paper, basic strategy to develop the grinding database of rule-based rule, which is strongly depended upon experience and intuition, is described.
일반적인 빈발패턴 탐사 방법은 항목의 빈발도만을 고려한다. 그러나 유용한 정보를 추출하는 데 있어 빈발도와 더불어 고려해야 하는 것은 빈발항목이 아니더라도 연관된 항목이 주기적으로 함께 발생한다면 시기나 시간에 따라 관심의 중요도가 변화하는 것을 고려해야 한다. 즉, 시간에 따라 사용자가 요구하는 서비스의 중요도는 다르므로 각 서비스 항목에 대한 중요도의 값을 고려하여 마이닝 하는 방법이 필요하다. 본 논문에서는 서비스 온톨로지 기반으로 가중치를 이용한 서비스 빈발 패턴을 추출하는 마이닝 기법을 제안한다. 제안하는 기법은 시공간 상황을 기반으로 서비스의 중요도를 고려한 가중치를 부여하여 연관 서비스를 발견한다. 새롭게 탐사되는 서비스는 저장되어 있는 서비스 규칙과의 새로운 조합을 통해 사용자에게 최적의 서비스 정보를 제공할 수 있는 기반이 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.