정보 시스템 개발에 있어 객체지향 프로그래밍 언어가 널리 사용된다. 이와 함께 객체지향 설계를 뒷받침하는 개념적 모델링 언어에 관한 관심도 높다. 이를 배경으로 통합 모델링 언어 혹은 UML로 알려진 개념적 모델링 언어는 여러 객체 지향 프로그래밍 언어와 함께 사용되면서 사후적 표준으로 자리 잡았다. UML은 클래스를 설계의 중심에 둔다. 또한 클래스들 간의 관계를 통해 체계적인 이해를 가능하게 한다. 특히 부분에 해당하는 클래스들과 전체에 해당하는 클래스의 관계인 부분-전체 관계를 설계할 수 있는 문법 또한 UML에 포함된다. 현실 세계에 부분-전체 관계로 파악될 수 있는 여러대상들이 존재하고 비즈니스 활동에 존재하는 각종 역할들의 구조에서도 부분-전체 관계로 표현될 수 있는 대상들이 보편적으로 보인다. 따라서 UML로 클래스들 간의 부분-전체 관계를 드러내는 일은 자연스럽다. 문제는 부분-전체 관계를 파악하는 활동은 UML 2.0의 표준에 포함되었으나 실제 설계 과정에서 적극 활용하기 위한 실천적 이론화가 부족하다는 점이다. 부분-전체 관계를 집합연관과 복합연관으로 세분화한 UML 문법은 표현 양식에서 부족함은 없을지라도 어떤 대상을 부분-전체로 파악하고, 이를 어떻게 집합연관이나 복합연관으로 분류해야 할 것인지에 대한 판단이 쉽게 결여된다. 지금까지 UML의 부분-전체 관계 규명은 언어적 표현법을 활용하는 것에 치우쳤다. 이와 같은 문제에 대한 대안을 제시하기 위해 본 연구는 메타모델 형식화 이론을 기반으로 UML 사용자가 부분-전체 관계를 판단하고 이를 집합연관과 복합연관으로 분류할 수 있는 실천적 대안을 제시한다. 이를 활용한 실험의 결과 메타모델 형식화가 UML 사용자들에게 통용되어 온 언어적 구분법보다 더 나은 결과를 낳는다는 점이 밝혀졌다. 본 연구는 부분-전체의 판별과 구분에 도움을 주는 실용적인 방법을 제안하고 검증하였다는 점에서 의의가 있다.
전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.
일제는 일선동조론에 바탕을 둔 동화정책의 일환으로 우리의 역사를 식민사관에 맞춰 재구성하는 한편 고고학적 조사와 고적에 대한 재해석을 통하여 이를 증명하려고 하였다. 경주, 부여 등 고도(古都)에 대한 고적조사 및 고적의 재해석 그리고 고적관광은 이러한 맥락에서 추진되었다. 특히, 부여지역의 경우 고적조사와 고적에 대한 재해석을 통하여 백제 사비기와 일본 고대 아스카(飛鳥)시기와의 밀접한 관련과 친연성을 강조하고 이를 바탕으로 재구성된 고적을 식민지 조선인에게 보여주는 고적관광을 실시하였다. 본 논문은 일제강점기 부여지역에 대한 고적조사와 고적의 재해석 및 고적관광이 어떤 맥락으로 이루어졌고 그것이 일반 대중들에게 어떻게 수용되었는지를 고찰하였다. 첫째, 부여지역의 고적조사는 1909년 세키노 다다시에 의해 처음 시도되어 일제강점기 동안 고분과 사지(寺址)에 대한 발굴 조사가 이루어졌다. 세키노는 부여의 고적조사 결과를 토대로 고대 중국(梁) 한국(百濟) 일본(倭)간의 문화적 관계와 영향을 설정하였고 사비시기의 백제문화가 중국문화의 영향을 받았으며 이를 다시 일본에 전달하여 아스카 문화를 형성하게 했다는 문화 전달 자설을 역설하였다. 이는 우리문화의 고유성을 부인하고 백제문화를 중국문화의 아류 또는 단순 전파자 역할로 왜곡 해석한 것으로 이러한 세키노의 관점은 일제강점기 내내 일관되게 유지되었다. 둘째, 1915년에 발족한 부여고적보존회는 부여고적에 대한 탈맥락적 해석을 통하여 고대 일본과 백제와의 관계를 동화론적 관점에서 재정립하였다. 특히 낙화암, 고란사, 청마산성 등에 대한 재해석을 통하여 일본과의 친연성을 강조함으로써 일제의 동화정책을 역사적 사실관계로 확정지으려고 하였다. 셋째, 부여지역의 고적관광은 부여고적보존회에서 주도적 역할을 하였으며, 주된 관광대상과 코스는 고적의 재해석을 통해 재구성된 고적들이었다. 일제는 식민지 조선인들에게 부여를 일본 고대문화의 원형 또는 본향으로 이념화된 공간을 보여주고자 하였다. 이처럼 일제강점기 부여의 고적조사와 고적에 대한 재해석 그리고 고적관광은 서로 밀접한 관련하에서 추진되었고 그 추진 주체가 조선총독부와 친일 관변단체였다는 점에서 타자의 시선에 의해 '만들어지고' '보여진' 것이었으며 그것은 식민지 표상공간으로서 부여의 재발견이었다.
최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.
본 연구는 치료적 목적의 달성을 위해 훈련받은 치료사(Horticultural Therapist)가 실시하는 원예활동에 대상자가 참여하는 치료(Therapy)의 공간으로서 '원예치료정원의 성능개선을 위한 평가지표 개발'에 관한 연구로서 원예치료는 대상자의 치료를 위한 '의학모형'이며 원예치료정원은 대상자와 원예치료사의 활동을 기능적이고 효율적으로 지원하는 특성화된 공간임을 기본 전제로 설정하였다. 연구의 수행을 위해 의도적 표집에 의해 모집된 전문가 패널을 대상으로 3차례의 델파이(Delphi)기법과 AHP기법을 수행하였으며, 이를 통해 원예치료정원의 성능개선을 위한 평가지표를 도출하였고, 각 평가지표들을 유형화, 계층화하여 평가항목의 우선순위를 파악하였다. 본 연구를 통한 결과는 다음과 같다. 첫째, 원예치료 관련 업무를 수행하는 공무원과 원예치료사를 대상으로 본 연구의 타당성을 확보하기 위한 전문가 설문을 실시하였으며, 분석결과 관련 공무원 75.2%, 원예치료사 87.8%로 두 직군 모두 원예치료정원에 대한 인식이 높았으며 원예치료를 실시함에 있어서 치료정원의 활용이 필요하다는 의견에 동의하는 것으로 나타났다. 둘째, 원예치료정원 성능평가를 위한 가중치가 적용된 평가지표 개발을 위해 총 3회에 걸쳐 델파이 조사를 실시하였다. 이후 두차례에 걸친 델파이 조사를 통해 타당도 및 신뢰도 분석 결과, 총 34개의 원예치료정원 성능개선을 위한 평가요소가 도출되었다. 셋째, 가중치가 적용된 원예치료정원의 성능개선을 위한 평가지표 개발을 위해 계층분석기법을 적용, 각 지표별 상대적 중요도 및 가중치를 분석한 결과 상위요인에서는 '자연과 인간의 상호작용'이 가장 중요한 요인으로 나타났으며, 다음으로는 '프로그램의 계획과 활용', '사회적 상호작용', '지속가능한 환경', '보편적 디자인'의 순으로 나타났다. 넷째, 전문가를 대상으로 원예치료정원 성능평가를 위한 가중치가 적용된 평가지표 개발을 위하여 종합가중치를 활용하였다. 평가지표의 가중치 적용은 평가점수에 AHP를 이용한 종합가중치를 곱하여 산출하는 것이 일반적이며 이러한 과정을 통해 평가지표들 간의 상대적인 우선순위를 토대로 가중치와 변환점수를 분석하여, '원예치료정원의 성능개선을 위한 평가지표 및 평가점수표'를 최종 작성하였다. 가중치가 적용된 평가표를 활용하여 기존에 조성된 원예치료정원의 효율성 증대를 위한 개선점을 도출할 경우, 전문가의 의견에 따른 항목별 중요도가 반영되어 있으므로 사항별 중요도를 판단하여 우선순위를 선정하여 개선할 수 있으며, 원예치료정원의 신규 조성 시에도 계획단계에서 원예치료 활동의 효율성 증대를 위한 방안으로 주요 지표를 미리 파악함으로서 가이드라인이 설정이나 기타 효율성 증대를 위한 방안을 제안하는데 도움이 될 것으로 판단된다.
이글은 『전경(典經)』의 「권지」편(編) 구절들을 통해 권지의 의미를 살펴보고, 다른 편에 나타난 권지적 면모와 『전경(典經)』 각 편의 장(章)의 양상을 찾아보며, 나아가 「권지」편 각 구절들의 변모를 『대순전경』 6판과 비교 대조하여 그 문헌학적 의미를 탐색할 목적으로 진행되었다. 상제가 1871년 9월 19일(陰) 전라도 고부군 우덕면 객망리(客望里)에 강세(降世)하여, 광구천하(匡救天下)하기 위해 천지인 삼계에 대한 대(大) 권능(權能)으로 9년간 천지공사(天地公事, 1901~1909)를 행하여, 인류에게 전북 모악산(母岳山) 대원사(大院寺)에서 연 상제의 천지대도(天地大道)가 전해지고 연차적으로 도수(度數)를 맞춰 지상에 오(五)만년 무량극락(無量極樂) 용화선경(龍華仙境)인 지상천국(地上天國)이 이룩되어 가는 것은 상제가 보여준 권능(權能)을 근간으로 천지공사가 삼계(三界)에서 완수(完遂)되기 때문이다. 또 「공사」편만이 아니라 「교운」, 「교법」, 「제생」, 「예시」편 등도 상제의 권능을 토대로 이루어져 최종적으로 지상천국이라는 유토피아가 구현되는 내용을 보여주고 있다. 따라서 각 편 구절들에 대한 상제의 권지를 토대로 한 고찰은 『전경』에 대한 통괄적 접근이라는 면에서도 의미가 있다고 할 수 있다. 또한 이글은 앞서 진행된 「행록」, 「교법」, 「공사」, 「교운」편 연구와 마찬가지로 『전경』 「권지」편 1장과 2장 구절들에 대해 『전경』(1974)보다 앞서 1965년에 출판된 증산교단(甑山敎團)에서 보편화된 경전인 『대순전경』 6판 구절들과 비교 분석하여, 「권지」편 구절들의 변이의 양상을 찾아보았다는 면에서도 연구의 의미가 있다. 이글에서 「권지」편 1장과 2장 구절들의 특성을 바탕으로 『전경』 각 편에 나타난 상제 권지의 양상을 찾아본 후 구절의 변이 양상을 『대순전경』 6판과 비교 연구한 결과를 요약해보면 다음과 같다. 첫째, 상제의 권지는 천지인 삼계에서 이루어져 천지공사(天地公事)를 통해 후천선경을 이루는 핵심적 요소가 됨을 정리 요약된 구절들에서 볼 수 있다. 둘째, 『전경』이 일곱 개의 편으로 나누어져 있지만, 「공사」편에 삼계 대권에 대한 구절이 나타나듯이 일곱 개의 편에 천지인으로 용사된 상제의 권능 관련 구절들이 분포되어 각 편의 제목이 나타내는 목적을 이루는 것으로 되어 있다. 이는 대표적으로 이글에서 본 「공사」편 1장 구절을 보아도 드러난다. 셋째, 여러 개의 장으로 되어 있는 『전경』의 5개 편에서의 장의 분류에 대한 기준은 교법을 제외하고 공통점은 연도별로 이루어졌다는 것이다. 「권지」편을 포함해서 다수의 장으로 이루어진 편에서 내용상으로 보더라도 장 분류에 대한 규칙성은 특별히 찾을 수 없었다. 넷째, 『전경』 「권지」편 1, 2장 구절들에 대해 이상호가 마지막으로 편저한 『대순전경』의 최종판인 6판(1965)을 대비시켜 살펴 본 결과 다음과 같이 크게 정리된다. 1. 두 문헌에서 구절의 내용이 거의 같은 구절도 있다. 2. 각 문헌의 서술이 단어(單語)나 몇 개 문장(文章)에서 차이가 나는 구절들도 등장한다. 3. 각 문헌의 구절의 연도가 차이가 나는 구절들이 보인다. 4. 기록의 내용상 두 문헌의 각각에서 더 추가된 기록들도 발견된다.
군(軍)에서 방위력개선사업(이하 방위사업)은 매우 투명하고 효율적으로 이루어져야 함에도, 방위사업 관련 법 및 규정의 과도한 다양화로 많은 실무자들이 원활한 방위사업 추진에 어려움을 겪고 있다. 한편, 방위사업 관련 실무자들이 각종 문서에서 다루는 법령 문장은 문장 내에서 표현 하나만 잘못되더라도 심각한 문제를 유발하는 특징을 가지고 있으나, 이를 실시간으로 바로잡기 위한 문장 비교 시스템 구축에 대한 노력은 미미했다. 따라서 본 논문에서는 Siamese Network 기반의 자연어 처리(NLP) 분야 인공 신경망 모델을 이용하여 군(軍)의 방위사업 관련 문서에서 등장할 가능성이 높은 문장과 이와 관련된 법령 조항의 유사도를 비교하여 위법 위험 여부를 판단·분류하고, 그 결과를 사용자에게 인지시켜 주는 '군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템' 구축 방안을 제안하려고 한다. 직접 제작한 데이터 셋인 모(母)문장(실제 법령에 등장하는 문장)과 자(子)문장(모(母)문장에서 파생시킨 변형 문장) 3,442쌍을 사용하여 다양한 인공 신경망 모델(Bi-LSTM, Self-Attention, D_Bi-LSTM)을 학습시켰으며 1 : 1 문장 유사도 비교 실험을 통해 성능 평가를 수행한 결과, 상당히 높은 정확도로 자(子)문장의 모(母)문장 대비 위법 위험 여부를 분류할 수 있었다. 또한, 모델 학습에 사용한 자(子)문장 데이터는 법령 문장을 일정 규칙에 따라 변형한 형태이기 때문에 모(母)·자(子)문장 데이터만으로 학습시킨 모델이 실제 군(軍) 보고서에 등장하는 문장을 효과적으로 분류한다고 판단하기에는 제한된다는 단점을 보완하기 위해, 실제 군(軍) 보고서에 등장하는 형태에 보다 더 가깝고 모(母)문장과 연관된 새로운 문장 120문장을 추가로 작성하여 모델의 성능을 평가해본 결과, 모(母)·자(子)문장 데이터만으로 학습시킨 모델로도 일정 수준 이상의 성능을 확인 할 수 있었다. 결과적으로 본 연구를 통해 방위사업 관련 군(軍) 보고서에서 등장하는 여러 특정 문장들이 각각 어느 관련 법령의 어느 조항과 가장 유사한지 살펴보고, 해당 조항과의 유사도 비교를 통해 위법 위험 여부를 판단하는 '실시간 군(軍) 문서와 관련 법령 간 자동화 비교 시스템'의 구축 가능성을 확인할 수 있었다.
인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.