• Title/Summary/Keyword: Rule Set

Search Result 731, Processing Time 0.027 seconds

An Efficient Algorithm for Mining Frequent Closed Itemsets Using Transaction Link Structure (트랜잭션 연결 구조를 이용한 빈발 Closed 항목집합 마이닝 알고리즘)

  • Han, Kyong Rok;Kim, Jae Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.242-252
    • /
    • 2006
  • Data mining is the exploration and analysis of huge amounts of data to discover meaningful patterns. One of the most important data mining problems is association rule mining. Recent studies of mining association rules have proposed a closure mechanism. It is no longer necessary to mine the set of all of the frequent itemsets and their association rules. Rather, it is sufficient to mine the frequent closed itemsets and their corresponding rules. In the past, a number of algorithms for mining frequent closed itemsets have been based on items. In this paper, we use the transaction itself for mining frequent closed itemsets. An efficient algorithm is proposed that is based on a link structure between transactions. Our experimental results show that our algorithm is faster than previously proposed methods. Furthermore, our approach is significantly more efficient for dense databases.

Application of Neural Networks For Estimating Evapotranspiration

  • Lee, Nam-Ho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1273-1281
    • /
    • 1993
  • Estimation of daily and seasonal evaportranspiration is essential for water resource planning irrigation feasibility study, and real-time irrigation water management . This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration . A neural network was developed to forecast daily evapotranspiration of the rice crop. It is a three-layer network with input, hidden , and output layers. Back-propagation algorithm with delta learning rule was used to train the neural network. Training neural network wasconducted usign daily actural evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity , and pan evaporation . During the training, neural network parameters were calibrated. The trained network was applied to a set of field data not used in the training . The created response of the neural network was in good agreement with desired values. Evaluating the neural networ performance indicates that neural network may be applied to the estimation of evapotranspiration of the rice crop.

  • PDF

An Efficient Discovery of Rules for Database Table (테이블 형식의 데이터베이스에 대한 규칙의 효율적 발견)

  • 석현태
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.155-159
    • /
    • 2003
  • In order to compansate the problem of fragmentating data and disdaining small group of data in decision trees, a descriptive rule set discovery method is suggested. The principle of association rule finding algorithm is presented and a modified association nile finding algorithm for efficiency is applied to target database which has condition and decision attributes to see the effect of modification.

  • PDF

OPTIMAL LIQUIDATION OF A LARGE BLOCK OF STOCK WITH REGIME SWITCHING

  • Shin, Dong-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.737-757
    • /
    • 2011
  • This work is concerned with an optimal selling rule for a large position of stock in a market. Selling a large block of stock in a short period typically depresses the market, which would result in a poor filling price. In addition, the large selling intensity makes the regime more likely to be poor state in the market. In this paper, regime switching and depressing terms associated with selling intensity are considered on a set of geometric Brownian models to capture movements of underlying asset. We also consider the liquidation strategy to sell much smaller number of shares in a long period. The goal is to maximize the overall return under state constraints. The corresponding value function with the selling strategy is shown to be a unique viscosity solution to the associated HJB equations. Optimal liquidation rules are characterized by a finite difference method. A numerical example is given to illustrate the result.

Fuzzy rule-based assembly algorithm for precision parts mating (퍼지규칙을 이용한 정밀부품 결합을 위한 조립알고리즘)

  • 박용길;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.693-698
    • /
    • 1991
  • This paper describes a fuzzy rule-based assembly algorithm for precision parts mating, The difficulties in devising reliable assembly strategies result from the complexity of the assembly process and the uncertainty such as imperfect knowledge of the parts being assembled as well as the limitations of the devices performing the assembly. To cope with above problems, we propose an assembly algorithm utilizing fuzzy set theory. The presented method allows us to represent the uncertainty by using fuzzy membership function and treat nonlinear sapping from measured force/torque to corrective motions using rules. Finally, the performance of this method is evaluated through a series of experiments. Experimental results show that the proposed method can be effectively used for chamferless and precision parts mating.

  • PDF

Study on Efficient Frequency Guard Band Decision Rule for Interference Avoidance

  • Park, Woo-Chul;Kim, Eun-Cheol;Kim, Jin-Young;Kim, Jae-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.182-187
    • /
    • 2009
  • When we assign frequency resources to a new radio service, the existing services need not to be interfered with by the new service. Therefore, when we make a frequency assignment, a guard band is necessary to separate adjacent frequency bands so that both can transmit simultaneously without interfering with each other. In this paper, we propose an efficient frequency guard band decision rule for avoiding interference between radio services. The guard band is established based on the probability of interference in the previously arranged scenario. The interference probability is calculated using the spectrum engineering advanced Monte Carlo(MC) analysis tool(SEAMCAT). After applying the proposed algorithm to set up the frequency guard band, we can decide on the guard band appropriately because the result satisfies the predefined criterion.

Piece-wise linear estimation of mechanical properties of materials with neural networks

  • Shin, Inho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.181-186
    • /
    • 1992
  • Many real-world problems are concerned with estimation rather than classification. This paper presents an adaptive technique to estimate the mechanical properties of materials from acoustoultrasonic waveforms. This is done by adapting a piece-wise linear approximation technique to a multi-layered neural network architecture. The piece-wise linear approximation network (PWLAN) finds a set of connected hyperplanes that fit all input vectors as close as possible. A corresponding architecture requires only one hidden layer to estimate any curve as an output pattern. A learning rule for PWLAN is developed and applied to the acousto-ultrasonic data. The efficiency of the PWLAN is compared with that of classical backpropagation network which uses generalized delta rule as a learning algorithm.

  • PDF

Fuzzy Gain Scheduling of Velocity PI Controller with Intelligent Learning Algorithm for Reactor Control

  • Kim, Dong-Yun;Seong, Poong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.73-78
    • /
    • 1996
  • In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller.

  • PDF

Producting Fuzzy Rules throungh Partition of Fuzzy Space (퍼지 공간 분할에 따른 퍼지 규칙의 자동생성)

  • 이양원
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.1
    • /
    • pp.123-152
    • /
    • 1993
  • This paper discusses how to automatically extract fuzzy rules from given data.The fuzzy space which contain given data are fitst subdivided into a set of hypercubes.each of which contains the homogeneous data belonging to the same class, and then a fuzzy rule is defined based on the constructed hypercube.In order to dynamically agjust the size of a hypercube. the fuzzy space is to be splitted based on a center vector and then the splitted subspaces are to be merged throungh the adjacency relation.The membership functions.which are to be embedded in a fuzzy rule.are to be formed through analyzing the cummulative histogram of given data along each axis of the constructed hypercube.

On a Stopping Rule for the Random Walks with Time Stationary Random Distribution Function

  • Hong, Dug-Hun;Oh, Kwang-Sik;Park, Hee-Joo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.293-301
    • /
    • 1995
  • Sums of independent random variables $S_n = X_1 + \cdots + X_n$ are considered, where the $X_n$ are chosen according to a stationary process of distributions. For $c > 0$, let $t_c$ be the smallest positive integer n such that $$\mid$S_n$\mid$ > cn^{\frac{1}{2}}$. In this set up we are concerned with finiteness of expectation of $t_c$ and we have some results of sign-invariant process as applications.

  • PDF