• 제목/요약/키워드: Rule Set

검색결과 731건 처리시간 0.022초

An improvement of LEM2 algorithm

  • The, Anh-Pham;Lee, Young-Koo;Lee, Sung-Young
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.302-304
    • /
    • 2011
  • Rule based machine learning techniques are very important in our real world now. We can list out some important application which we can apply rule based machine learning algorithm such as medical data mining, business transaction mining. The different between rules based machine learning and model based machine learning is that model based machine learning out put some models, which often are very difficult to understand by expert or human. But rule based techniques output are the rule sets which is in IF THEN format. For example IF blood pressure=90 and kidney problem=yes then take this drug. By this way, medical doctor can easy modify and update some usable rule. This is the scenario in medical decision support system. Currently, Rough set is one of the most famous theory which can be used for produce the rule. LEM2 is the algorithm use this theory and can produce the small set of rule on the database. In this paper, we present an improvement of LEM2 algorithm which incorporates the variable precision techniques.

Smart Thermostat based on Machine Learning and Rule Engine

  • Tran, Quoc Bao Huy;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.155-165
    • /
    • 2020
  • In this paper, we propose a smart thermostat temperature set-point control method based on machine learning and rule engine, which controls thermostat's temperature set-point so that it can achieve energy savings as much as possible without sacrifice of occupants' comfort while users' preference usage pattern is respected. First, the proposed method periodically mines data about how user likes for heating (winter)/cooling (summer) his or her home by learning his or her usage pattern of setting temperature set-point of the thermostat during the past several weeks. Then, from this learning, the proposed method establishes a weekly schedule about temperature setting. Next, by referring to thermal comfort chart by ASHRAE, it makes rules about how to adjust temperature set-points as much as low (winter) or high (summer) while the newly adjusted temperature set-point satisfies thermal comfort zone for predicted humidity. In order to make rules work on time or events, we adopt rule engine so that it can achieve energy savings properly without sacrifice of occupants' comfort. Through experiments, it is shown that the proposed smart thermostat temperature set-point control method can achieve better energy savings while keeping human comfort compared to other conventional thermostat.

LAN 상의 장애 검출 및 위치 확인을 위한 규칙 기반 장애 진단 에이전트 시스템 (Rule-based Fault Detection Agent System for Fault Detection and Location on LAN)

  • 조강홍;안성진;정진욱
    • 한국정보처리학회논문지
    • /
    • 제7권7호
    • /
    • pp.2169-2178
    • /
    • 2000
  • This paper proposes the structure of an agent and rules for fault detection and location on LAN. To find out a reason of critical fault incurred LAN, collision detection rule, error detection rule, broadcast detection rule, system location rule, and Internet application location rule ar shown. Also, the structure of multi-agent system and state transition diagram is portrayed to have connectivity with he set of rules. To verify availability of proposed rules, the process to find a faulty system is shown by monitoring and analyzing the LAN fault occurrences from the proposed set of rules. Such an rule based agent system is helpful to an Internet manager to solve a reason of fault and make ad decision from gathering management information.

  • PDF

확장된 표현을 이용하는 분류 알고리즘 (A Classification Algorithm using Extended Representation)

  • 이종찬
    • 한국융합학회논문지
    • /
    • 제8권2호
    • /
    • pp.27-33
    • /
    • 2017
  • 인터넷을 통해 사용자에게 클라우드 컴퓨팅 서비스를 효율적으로 제공하기 위해서는 데이터 센터에 가상화와 분산 컴퓨팅 기술을 기반으로 하여 IT 자원을 구성해야 한다. 본 논문은 폭넓은 분야에서 새로운 훈련 데이터가 언제라도 추가될 수 있고, 또한 언제라도 훈련 데이터에 새로운 속성이 추가될 수 있다는 문제에 특별히 초점을 맞춘다. 이러한 경우, 기존 속성 집합들을 가지는 훈련 데이터로 생성된 규칙은 쓸모없게 된다. 더구나 새롭게 추가된 데이터나 속성을 가지는 새로운 데이터는 기존 규칙과 결합될 수 없다. 본 논문은 이와 같은 경우를 자연스럽게 처리할 수 있는 보다 진보된 새 추론 엔진을 제안한다. 이 방법에서 기존의 데이터로 부터 생성된 규칙은 개선된 규칙을 생성하기 위한 새로운 데이터 집합과 결합될 수 있다.

라프집합을 이용한 규칙베이스와 사례베이스의 통합 추론에 관한 연구 (A Study On the Integration Reasoning of Rule-Base and Case-Base Using Rough Set)

  • 진상화;정환묵
    • 한국정보처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.103-110
    • /
    • 1998
  • 기존의 규칙베이스 추론(Rule-Based REasoning : RBR)과 사례베이스 추론 (Case-Base : CB)가 통합되어 추론되고 있지만, 많은 수의 규칙(Rule)과 사례(Case)에 의해 추론 시간이 많이 걸리는 단점이 있다. 본 논문에서는 이런 단점을 해결하기 위하여, 다중 의미 또는 불확실한 지식을 쉽게 표현할 수 있는 라프집합 (Rough Set)을 이용하여 RB와 CB를 간략화한 새로운 추론 방법을 제안한다. 라프집합의 식별(classification)과 근사(aprroximation)개념을 이용하여, RB와 CB를 통치 클래스(equivalence class)로 분류하여 각각을 각략화하고, 간략화된 RB와 CB를 이용하여 통합 추론하여, 상호 보완적인 역할에 의해 결정 해를 얻고자 하는 것이다.

  • PDF

하수처리 활성오니공정을 위한 규칙 베이스 퍼지 제어기 설계 (Design of Rule-Based Fuzzy Controller for Activated Sludge Process in Sewage Water Treatment)

  • 황희수;김현기;오성권;우광방
    • 전자공학회논문지B
    • /
    • 제28B권7호
    • /
    • pp.557-565
    • /
    • 1991
  • The activated sludge process is a commonly used method for terating sewage and waste waters. The process is chatacterized by a lack of measurement instrumentations and control goals that are not always clear and not well understood. In such process, fuzzy control concept may be able to be adapted, do this paper presents a design method for fuzzy controller based on a selected sub-rule set from the total rule set and a multivariable fuzzy reasoning algorithms. In order to achievesystematic and efficient control of the activated sludge process under a great deal of disiutbances and a variety of perfotmance characteristics, a top-level rule-based fuzzy controller os proposed which provises lower-controllers with the suitable set-points according tothe onput-output states of the process.

  • PDF

결합적 방법에 의한 귀납법칙 집합의 생성 (An Integrated Method for Generating Inductive Rule Sets)

  • 이창환
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.27-32
    • /
    • 2003
  • 귀납법칙 생성 시스템은 데이터에서부터 법칙을 자동으로 발견하는 시스템으로서 현재 많은 연구가 진행되고 있다. 본 논문은 정보이론을 이용하여 데이터로부터 귀납법칙을 자동으로 생성하는 시스템을 제시하고 또한 귀납법칙 생성 시스템에 의하여 생성되는 규칙들 중에서 가장 좋은 성능을 보이는 규칙 집합을 구하기 위하여 이를 유전자 알고리즘과 결합시켜 최적화된 귀납법칙 집합을 탐색하는 방법을 제시하였다. 제안된 시스템의 성능을 평가하기 위하여 다수의 기계학습 데이터를 사용하여 기존의 다른 방법들과 비교하였으며, 제안된 시스템은 대부분의 경우에 좋은 정확도를 제공하였다.

지능형 제어기법에 의한 생산 계획 설계 (Design of the intelligent control-based job scheduler)

  • 이창훈;서기성;정현호;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.286-289
    • /
    • 1989
  • The purpose of this paper is to design a job scheduling algorithm utilizing intelligent control technique. Rulebase is built through the evaluation of rule-set scheduling. 24 scheduling rule-sets and meta-rules are employed. An appropriate scheduling rule-set is selected based on this rulebase and current manufacturing system status. Six criteria have been used to evaluate the performance of scheduling. The performance of sheduling is dependent on random breakdown of the major FMS components during simulation.

  • PDF

On the Reachability Set of Petri Net under the Earliest Firing Rule

  • Ohta, Atsushi;Seto, Hiroaki;Tsuji, Kohkichi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.641-644
    • /
    • 2000
  • This paper studies coverability tree and reach-ability set of Petri net under the earliest filing rule. Conventional algorithm for coverability tree for ‘normal’ Petri net is not good for Petri net under the earliest firing rule. More over, it is shown that there exists no coverability graph for general class of earliest firing Petri net. Some subclasses are studied where coverability graph can be constructed.

  • PDF

분류자 시스템을 이용한 인공개미의 적응행동의 학습 (Learning of Adaptive Behavior of artificial Ant Using Classifier System)

  • 정치선;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.361-367
    • /
    • 1998
  • The main two applications of the Genetic Algorithms(GA) are the optimization and the machine learning. Machine Learning has two objectives that make the complex system learn its environment and produce the proper output of a system. The machine learning using the Genetic Algorithms is called GA machine learning or genetic-based machine learning (GBML). The machine learning is different from the optimization problems in finding the rule set. In optimization problems, the population of GA should converge into the best individual because optimization problems, the population of GA should converge into the best individual because their objective is the production of the individual near the optimal solution. On the contrary, the machine learning systems need to find the set of cooperative rules. There are two methods in GBML, Michigan method and Pittsburgh method. The former is that each rule is expressed with a string, the latter is that the set of rules is coded into a string. Th classifier system of Holland is the representative model of the Michigan method. The classifier systems arrange the strength of classifiers of classifier list using the message list. In this method, the real time process and on-line learning is possible because a set of rule is adjusted on-line. A classifier system has three major components: Performance system, apportionment of credit system, rule discovery system. In this paper, we solve the food search problem with the learning and evolution of an artificial ant using the learning classifier system.

  • PDF