• Title/Summary/Keyword: Rule Set

Search Result 731, Processing Time 0.032 seconds

Scalable Packet Classification Algorithm through Mashing (Hashing을 사용한 Scalable Packet Classification 알고리즘 연구)

  • Heo, Jae-Sung;Choi, Lynn
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.113-116
    • /
    • 2002
  • It is required to network to make more intelligent packet processing and forwarding for increasing bandwidth and various services. Classification provides these intelligent to network which is acquired by increasing number of rules in classification rule set. In this Paper, we propose a classification algorithm efficient to scalable rule set ahead as well as Present small rule set. This algorithm has competition to existing methods by performance and advantage that it is mixed with another algorithm because il does not change original shape of rule set.

  • PDF

An Algorithm Solving SAT Problem Based on Splitting Rule and Extension Rule

  • Xu, Youjun
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1149-1157
    • /
    • 2017
  • The satisfiability problem is always a core problem in artificial intelligence (AI). And how to improve the efficiency of algorithms solving the satisfiability problem is widely concerned. Algorithm IER (Improved Extension Rule) is based on extension rule. The number of atoms and the number of clauses affect the efficiency of the algorithm IER. DPLL rules are helpful to reduce these numbers. Then a complete algorithm CIER based on splitting rule and extension rule is proposed in this paper in order to improve the efficiency. At first, the algorithm CIER (Complete Improved Extension Rule) reduces the scale of a clause set with DPLL rules. Then, the clause set is split into a group of small clause sets. In the end, the satisfiability of the clause set is got from these small clause sets'. A strategy MOAMD (maximum occurrences and maximum difference) for the algorithm CIER is given. With this strategy, a better arrangement of atoms could be got. This arrangement could make the number of small clause sets fewer and the scale of these sets smaller. So, the algorithm CIER will be more efficient.

A Real-Time Stock Market Prediction Using Knowledge Accumulation (지식 누적을 이용한 실시간 주식시장 예측)

  • Kim, Jin-Hwa;Hong, Kwang-Hun;Min, Jin-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2011
  • One of the major problems in the area of data mining is the size of the data, as most data set has huge volume these days. Streams of data are normally accumulated into data storages or databases. Transactions in internet, mobile devices and ubiquitous environment produce streams of data continuously. Some data set are just buried un-used inside huge data storage due to its huge size. Some data set is quickly lost as soon as it is created as it is not saved due to many reasons. How to use this large size data and to use data on stream efficiently are challenging questions in the study of data mining. Stream data is a data set that is accumulated to the data storage from a data source continuously. The size of this data set, in many cases, becomes increasingly large over time. To mine information from this massive data, it takes too many resources such as storage, money and time. These unique characteristics of the stream data make it difficult and expensive to store all the stream data sets accumulated over time. Otherwise, if one uses only recent or partial of data to mine information or pattern, there can be losses of valuable information, which can be useful. To avoid these problems, this study suggests a method efficiently accumulates information or patterns in the form of rule set over time. A rule set is mined from a data set in stream and this rule set is accumulated into a master rule set storage, which is also a model for real-time decision making. One of the main advantages of this method is that it takes much smaller storage space compared to the traditional method, which saves the whole data set. Another advantage of using this method is that the accumulated rule set is used as a prediction model. Prompt response to the request from users is possible anytime as the rule set is ready anytime to be used to make decisions. This makes real-time decision making possible, which is the greatest advantage of this method. Based on theories of ensemble approaches, combination of many different models can produce better prediction model in performance. The consolidated rule set actually covers all the data set while the traditional sampling approach only covers part of the whole data set. This study uses a stock market data that has a heterogeneous data set as the characteristic of data varies over time. The indexes in stock market data can fluctuate in different situations whenever there is an event influencing the stock market index. Therefore the variance of the values in each variable is large compared to that of the homogeneous data set. Prediction with heterogeneous data set is naturally much more difficult, compared to that of homogeneous data set as it is more difficult to predict in unpredictable situation. This study tests two general mining approaches and compare prediction performances of these two suggested methods with the method we suggest in this study. The first approach is inducing a rule set from the recent data set to predict new data set. The seocnd one is inducing a rule set from all the data which have been accumulated from the beginning every time one has to predict new data set. We found neither of these two is as good as the method of accumulated rule set in its performance. Furthermore, the study shows experiments with different prediction models. The first approach is building a prediction model only with more important rule sets and the second approach is the method using all the rule sets by assigning weights on the rules based on their performance. The second approach shows better performance compared to the first one. The experiments also show that the suggested method in this study can be an efficient approach for mining information and pattern with stream data. This method has a limitation of bounding its application to stock market data. More dynamic real-time steam data set is desirable for the application of this method. There is also another problem in this study. When the number of rules is increasing over time, it has to manage special rules such as redundant rules or conflicting rules efficiently.

Rule set of object-oriented classification using Landsat imagery in Donganh, Hanoi, Vietnam

  • Thu, Trinh Thi Hoai;Lan, Pham Thi;Ai, Tong Thi Huyen
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.521-527
    • /
    • 2013
  • Rule set is an important step which impacts significantly on accuracy of object-oriented classification result. Therefore, this paper proposes a rule set to extract land cover from Landsat Thematic Mapper (TM) imagery acquired in Donganh, Hanoi, Vietnam. The rules were generated to distinguish five classes, namely river, pond, residential areas, vegetation and paddy. These classes were classified not only based on spectral characteristics of features, but also indices of water, soil, vegetation, and urban. The study selected five indices, including largest difference index max.diff; length/width; hue, saturation and intensity (HSI); normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) based on membership functions of objects. Overall accuracy of classification result is 0.84% as the rule set is used in classification process.

A Study on Construction and Implementation of Web education System with Chinese conversion rule set (중국어 규칙변환 웹 교육시스템 설계 및 구현에 관한 연구)

  • Lee, Ji Hyun;Lee, Eun Ryoung
    • Journal of Digital Contents Society
    • /
    • v.17 no.4
    • /
    • pp.227-234
    • /
    • 2016
  • When Chinese character used in Korea, so did the characters' pronunciation, so many Korean Chinese characters today have similar pronunciation with Chinese, but since Korean and Chinese pronunciations were preserved and developed in different alphabets, the written letter of the pronunciation also differs. This study on Chinese education, has constructed and implemented an easy way to study Chinese pronunciations by creating conversion rule set between Chinese pronunciation, Chinese Hanyu latin Pinyin and Korean chinese character pronunciation consisting of an initial sound, a medial vowel, and a final consonant. This study has established web version and application version of this conversion rule set education system to enhance Chinese education.

Integration of Heterogeneous Models with Knowledge Consolidation (지식 결합을 이용한 서로 다른 모델들의 통합)

  • Bae, Jae-Kwon;Kim, Jin-Hwa
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.177-196
    • /
    • 2007
  • For better predictions and classifications in customer recommendation, this study proposes an integrative model that efficiently combines the currently-in-use statistical and artificial intelligence models. In particular, by integrating the models such as Association Rule, Frequency Matrix, and Rule Induction, this study suggests an integrative prediction model. Integrated models consist of four models: ASFM model which combines Association Rule(A) and Frequency Matrix(B), ASRI model which combines Association Rule(A) and Rule Induction(C), FMRI model which combines Frequency Matrix(B) and Rule Induction(C), and ASFMRI model which combines Association Rule(A), Frequency Matrix(B), and Rule Induction(C). The data set for the tests is collected from a convenience store G, which is the number one in its brand in S. Korea. This data set contains sales information on customer transactions from September 1, 2005 to December 7, 2005. About 1,000 transactions are selected for a specific item. Using this data set. it suggests an integrated model predicting whether a customer buys or not buys a specific product for target marketing strategy. The performance of integrated model is compared with that of other models. The results from the experiments show that the performance of integrated model is superior to that of all other models such as Association Rule, Frequency Matrix, and Rule Induction.

Fuzzy Modeling by Genetic Algorithm and Rough Set Theory (GA와 러프집합을 이용한 퍼지 모델링)

  • Joo, Yong-Suk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.333-336
    • /
    • 2002
  • In many cases, fuzzy modeling has a defect that the design procedure cannot be theoretically justified. To overcome this difficulty, we suggest a new design method for fuzzy model by combining genetic algorithm(GA) and mush set theory. GA, which has the advantages is optimization, and rule base. However, it is some what time consuming, so are introduce rough set theory to the rule reduction procedure. As a result, the decrease of learning time and the considerable rate of rule reduction is achieved without loss of useful information. The preposed algorithm is composed of three stages; First stage is quasi-optimization of fuzzy model using GA(coarse tuning). Next the obtained rule base is reduced by rough set concept(rule reduction). Finally we perform re-optimization of the membership functions by GA(fine tuning). To check the effectiveness of the suggested algorithm, examples for time series prediction are examined.

  • PDF

Knowledge Based Simulation for Production Scheduling (생산일정계획을 위한 지식 기반 모의실험)

  • La, Tae-Young;Kim, Sheung-Kown;Kim, Sun-Uk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.197-213
    • /
    • 1997
  • It is not easy to find a good production schedule which can be used in practice. Therefore, production scheduling simulation with a simple dispatching rule or a set of dispatching rules is used. However, a simple dispatching rule may not create a robust schedule, for the same rule is blindly applied to all internal production processes. The presumption is that there might be a specific combination of appropriate rules that can improve the efficiency of a total production system for a certain type of orders. In order to acquire a better set of dispatching rules, simulation is used to examine the performance of various combinations of dispatching rule sets. There are innumerable combination of rule sets. Hence it takes too much computer simulation time to find a robust set of dispatching rule for a specific production system. Therefore, we propose a concept of the knowledge based simulation to circumvent the problem. The knowledge based simulation consists of knowledge bases, an inference engine and a simulator. The knowledge base is made of rule sets that is extracted from both simulation and human intuition obtained by the simulation studies. For a certain type of orders, the proposed system provides several sets of dispatching rules that are expected to generate better results. Then the scheduler tries to find the best by simulating all proposed set of rules with the simulator. The knowledge-based simulator armed with the acquired knowledge has produced improved solutions in terms of time and scheduling performance.

  • PDF

An N-version Learning Approach to Enhance the Prediction Accuracy of Classification Systems in Genetics-based Learning Environments (유전학 기반 학습 환경하에서 분류 시스템의 성능 향상을 위한 엔-버전 학습법)

  • Kim, Yeong-Jun;Hong, Cheol-Ui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1841-1848
    • /
    • 1999
  • DELVAUX is a genetics-based inductive learning system that learns a rule-set, which consists of Bayesian classification rules, from sets of examples for classification tasks. One problem that DELVAUX faces in the rule-set learning process is that, occasionally, the learning process ends with a local optimum without finding the best rule-set. Another problem is that, occasionally, the learning process ends with a rule-set that performs well for the training examples but not for the unknown testing examples. This paper describes efforts to alleviate these two problems centering on the N-version learning approach, in which multiple rule-sets are learning and a classification system is constructed with those learned rule-sets to improve the overall performance of a classification system. For the implementation of the N-version learning approach, we propose a decision-making scheme that can draw a decision using multiple rule-sets and a genetic algorithm approach to find a good combination of rule-sets from a set of learned rule-sets. We also present empirical results that evaluate the effect of the N-version learning approach in the DELVAUX learning environment.

  • PDF

소비자 구매행동 예측을 위한 이질적인 모형들의 통합

  • Bae, Jae-Gwon;Kim, Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.489-498
    • /
    • 2007
  • For better predictions and classifications in customer recommendation, this study proposes an integrative model that efficiently combines the currently-in-use statistical and artificial intelligence models. In particular, by integrating the models such as Association Rule, Frequency Matrix, and Rule Induction, this study suggests an integrative prediction model. The data set for the tests is collected from a convenience store G, which is the number one in its brand in S. Korea. This data set contains sales information on customer transactions from September 1, 2005 to December 7, 2005. About 1,000 transactions are selected for a specific item. Using this data set, it suggests an integrated model predicting whether a customer buys or not buys a specific product for target marketing strategy. The performance of integrated model is compared with that of other models. The results from the experiments show that the performance of integrated model is superior to that of all other models such as Association Rule, Frequency Matrix, and Rule Induction.

  • PDF