• 제목/요약/키워드: Rule Discovery

검색결과 92건 처리시간 0.021초

시 계열 데이터에서의 연관성 발견을 위한 기법 (The Method of Rule Discovery for Time Series Data)

  • 이준호;차재혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.607-609
    • /
    • 2004
  • 본 논문은 시 계열 데이터에서의 연관성 발견에 있어서 복잡성과 연산량을 효과적으로 줄이며 연관성을 찾아내는 기법에 대해 기술한다. 기존의 시 계열 데이터에서의 sequence 분할 방법은 복잡한 clustering 기법을 사용하여 많은 시간과 resource를 필요로 하는 제한이 있다 이에 본 논문에서는 효과적인 sequence 분할을 위한 증감 table을 이용한 방법을 제안하였다.

  • PDF

웹 페이지 방문 시간을 고려한 연관 규칙 탐색

  • 강형창;김익찬;김철수
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.263-269
    • /
    • 2005
  • 웹 사이트를 이용하는 사용자들은 정보를 편리하게 얻고자 한다. 웹 사이트 운영자들은 웹 사이트를 이용하는 사용자들에게 차별화된 서비스를 제공하기 위해 사용자에 따른 패턴 분석을 해야 한다. 연관 규칙은 패턴 발견을 위해 데이터 마이닝 기법중의 하나이다. 사용자에 따른 패턴을 찾아내면, 사용자에 따른 차별화된 서비스를 제공할 수 있다. 사용자에 따른 패턴은 연관 규칙 탐색으로 알 수 있고, 웹 페이지 방문 시간을 고려한 연관 규칙 탐색 결과는 차별화된 웹 구조 서비스 및 추천 서비스가 가능하다.

  • PDF

An Empirical Study of Qualities of Association Rules from a Statistical View Point

  • Dorn, Maryann;Hou, Wen-Chi;Che, Dunren;Jiang, Zhewei
    • Journal of Information Processing Systems
    • /
    • 제4권1호
    • /
    • pp.27-32
    • /
    • 2008
  • Minimum support and confidence have been used as criteria for generating association rules in all association rule mining algorithms. These criteria have their natural appeals, such as simplicity; few researchers have suspected the quality of generated rules. In this paper, we examine the rules from a more rigorous point of view by conducting statistical tests. Specifically, we use contingency tables and chi-square test to analyze the data. Experimental results show that one third of the association rules derived based on the support and confidence criteria are not significant, that is, the antecedent and consequent of the rules are not correlated. It indicates that minimum support and minimum confidence do not provide adequate discovery of meaningful associations. The chi-square test can be considered as an enhancement or an alternative solution.

전략적 중요도를 고려한 연관규칙의 발견: WARM (Association Rule Discovery Considering Strategic Importance: WARM)

  • 최덕원
    • 정보처리학회논문지D
    • /
    • 제17D권4호
    • /
    • pp.311-316
    • /
    • 2010
  • 본 논문은 가중치를 고려한 연관규칙탐사 알고리즘(WARM)을 제시한다. 각 전략적 요소항목에 가중치를 부여하는 것과, 각 전략요소 항목별로 원시 자료값을 정규화하는 것이 이 논문에서 제시하는 알고리즘의 중요한 내용을 구성하고 있다. 본 논문은 TSAA 알고리즘을 확장 발전 시킨 연구로서 전략적 중요도를 반영하는 항목으로는 각 품목의 이익기여도, 마케팅 가치, 고객만족도 등을 사용하였다. 한 대형할인점의 실제 거래자료를 사용하여 알고리즘의 성능을 검사하였으며, Apriori, TSAA 및 WARM의 세 가지 알고리즘을 사용한 탐사결과를 비교 분석하였다. 분석의 결과 세 가지 알고리즘은 연관분석 행태에 있어서 각각 독특한 탐사행태를 보이는 것으로 나타났다.

최적 연관 속성 규칙을 이용한 비명시적 단백질 상호작용의 예측 (Prediction of Implicit Protein - Protein Interaction Using Optimal Associative Feature Rule)

  • 엄재홍;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권4호
    • /
    • pp.365-377
    • /
    • 2006
  • 단백질들은 서로 다른 단백질들과 상호작용 하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질 상호작용의 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이타가 산출되고 있는 현(現) 게놈시대에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모(Saccharomyces cerevisiae)에 대해 공개되어있는 단백질 상호작용 데이타들에서 속성들 간의 연관을 통해 유추 가능한 잠재적 단백질 상호작용들을 예측하기 위한 연관속성 마이닝 방법을 제시한다. 단백질의 속성들 중 연속값을 가지는 속성값들은 최대상호 의존성에 기반을 두어 이산화 하였으며, 정보이론기반 속성선택 알고리즘을 사용하여 단백질들 간의 상호작용 예측을 위해 고려되는 단백질의 속성(attribute) 수 증가에 따른 속성차원문제를 극복하도록 하였다. 속성들 간의 연관성 발견은 데이타마이닝 분야에서 사용되는 연관규칙 발견(association rule discovery) 방법을 사용하였다 논문에서 제안한 방법은 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 최대 약 96.5%의 예측 정확도를 보였으며 속성필터링을 통하여 속성필터링을 하지 않는 기존의 방법에 비해 최대 약 29.4% 연관규칙 발견속도 향상을 보였다.

분류자 시스템을 이용한 인공개미의 적응행동의 학습 (Learning of Adaptive Behavior of artificial Ant Using Classifier System)

  • 정치선;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.361-367
    • /
    • 1998
  • The main two applications of the Genetic Algorithms(GA) are the optimization and the machine learning. Machine Learning has two objectives that make the complex system learn its environment and produce the proper output of a system. The machine learning using the Genetic Algorithms is called GA machine learning or genetic-based machine learning (GBML). The machine learning is different from the optimization problems in finding the rule set. In optimization problems, the population of GA should converge into the best individual because optimization problems, the population of GA should converge into the best individual because their objective is the production of the individual near the optimal solution. On the contrary, the machine learning systems need to find the set of cooperative rules. There are two methods in GBML, Michigan method and Pittsburgh method. The former is that each rule is expressed with a string, the latter is that the set of rules is coded into a string. Th classifier system of Holland is the representative model of the Michigan method. The classifier systems arrange the strength of classifiers of classifier list using the message list. In this method, the real time process and on-line learning is possible because a set of rule is adjusted on-line. A classifier system has three major components: Performance system, apportionment of credit system, rule discovery system. In this paper, we solve the food search problem with the learning and evolution of an artificial ant using the learning classifier system.

  • PDF

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

Active Learning Environment for the Heritage of Korean Modern Architecture: a Blended-Space Approach

  • Jang, Sun-Young;Kim, Sung-Ah
    • International Journal of Contents
    • /
    • 제12권4호
    • /
    • pp.8-16
    • /
    • 2016
  • This research proposes the composition logic of an Active Learning Environment (ALE), to enable discovery by learning through experience, whilst increasing knowledge about modern architectural heritage. Linking information to the historical heritage using Information and Communication Technology (ICT) helps to overcome the limits of previous learning methods, by providing rich learning resources on site. Existing field trips of cultural heritages are created to impart limited experience content from web resources, or receive content at a specific place through humanities Geographic Information System (GIS). Therefore, on the basis of the blended space theory, an augmented space experience method for overcoming these shortages was composed. An ALE space framework is proposed to enable discovery through learning in an expanded space. The operation of ALE space is needed to create full coordination, such as a Content Management System (CMS). It involves a relation network to provide knowledge to the rule engine of the CMS. The application is represented with the Deoksugung Palace Seokjojeon hall example, by describing a user experience scenario.

Association Rule Mining Algorithm and Analysis of Missing Values

  • Lee, Jae-Wan;Bobby D. Gerardo;Kim, Gui-Tae;Jeong, Jin-Seob
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.150-156
    • /
    • 2003
  • This paper explored the use of an algorithm for the data mining and method in handling missing data which had generated enhanced association patterns observed using the data illustrated here. The evaluations showed that more association patterns are generated in the second analysis which suggests more meaningful rules than in the first situation. It showed that the model offer more precise and important association rules that is more valuable when applied for business decision making. With the discovery of accurate association rules or business patterns, strategies could be efficiently planned out and implemented to improve marketing schemes. This investigation gives rise to a number of interesting issues that could be explored further like the effect of outliers and missing data for detecting fraud and devious database entries.

확률적 퍼지 룰 기반 학습 시스템의 적응 방법 (Adaptation Methods for a Probabilistic Fuzzy Rule-based Learning System)

  • 이형욱;변증남
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.223-226
    • /
    • 2007
  • 지식 발견 (knowledge discovery)의 관점에서, 단기간 동안 취득된 데이터 패턴을 학습하고자 하는 경우 데이터에 비일관적인(inconsistent) 패턴이 포함되어 있다면 확률적 퍼지 룰(probabilistic fuzzy rule) 기반의 지식 표현 방법 및 적절한 학습 알고리즘을 이용하여 효과적으로 다룰 수 있다. 하지만 장기간 동안 지속적으로 얻어진 데이터 패턴을 다루고자 하는 경우, 데이터가 시변(time-varying) 특성을 가지고 있으면 기존에 추출된 지식을 변화된 데이터에 활용하기 어렵게 된다. 때문에 이러한 데이터를 다루는 학습 시스템에는 패턴의 변화에 맞추어 갈 수 있는 지속적인 적응력(adaptivity)이 요구된다. 본 논문에서는 이러한 적응성의 측면을 고려하여 평생 학습(life-long learning)의 관점 에 서 확률적 퍼지 룰 기반의 학습 시스템에 적용될 수 있는 두 가지 형태의 적응 방법에 대해서 설명하도록 한다.

  • PDF