• Title/Summary/Keyword: Rule Base System

Search Result 399, Processing Time 0.044 seconds

Design of Falling Recognition Application System using Deep Learning

  • Kwon, TaeWoo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.120-126
    • /
    • 2020
  • Studies are being conducted regarding falling recognition using sensors on smartphonesto recognize falling in human daily life. These studies use a number of sensors, mostly acceleration sensors, gyro sensors, motion sensors, etc. Falling recognition system processes the values of sensor data by using a falling recognition algorithm and classifies behavior based on thresholds. If the threshold is ambiguous, the accuracy will be reduced. To solve this problem, Deep learning was introduced in the behavioral recognition system. Deep learning is a kind of machine learning technique that computers process and categorize input data rather than processing it by man-made algorithms. Thus, in this paper, we propose a falling recognition application system using deep learning based on smartphones. The proposed system is powered by apps on smartphones. It also consists of three layers and uses DataBase as a Service (DBaaS) to handle big data and address data heterogeneity. The proposed system uses deep learning to recognize the user's behavior, it can expect higher accuracy compared to the system in the general rule base.

The Allocation of Inspection Efforts Using a Knowledge Based System

  • Kang, Kyong-sik;Stylianides, Christodoulos;La, Seung-houn
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.18-24
    • /
    • 1990
  • The location of inspection stations is a significant component of production systems. In this paper, a prototype expert system is designed for deciding the optimal location of inspection stations. The production system is defined as a single channel of n serial operation stations. The potential inspection station can be located after any of the operation stations. Nonconforming units are generated from a compound binomial distribution with known parameters at any given operation station. Traditionally Dynamic programming, Zero-one integer programming, or Non-linear programming techniques are used to solve this problem. However a problem with these techniques is that the computation time becomes prohibitively large when t be number of potential inspection stations are fifteen or more. An expert system has the potential to solve this problem using a rule-based system to determine the near optimal location of inspection stations. This prototype expert system is divided into a static database, a dynamic database and a knowledge base. Based on defined production systems, the sophisticated rules are generated by the simulator as a part of the knowledge base. A generate-and-test inference mechanism is utilized to search the solution space by applying appropriate symbolic and quantitative rules based on input data. The goal of the system is to determine the location of inspection stations while minimizing total cost.

  • PDF

An improvement of control performance of ship by FNN controller (FNN 제어기에 의한 선박의 조종성능개선)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1228-1229
    • /
    • 2011
  • A novel approach has been promoted for FNN ship controllers. An Electro-hydraulic governor has been widely adopted to the ship speed control of propulsion marine diesel engines for a long time, it was very difficult for Electro-hydraulic governor to regulate the speed of high power engine with long stroke at low speed and low load, because of the jiggling phenomena by rough fluctuation of rotating torque and the hunting phenomena by long dead time occurred in fuel combustion process in the engine cylinder. This paper provides an efficient way for improving control performance by FNN controller. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The performance of controller is evaluated by the system simulation using simulink tools.

  • PDF

A ship control by fuzzy neutral network (FNN에 의한 선박의 제어)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1703_1704
    • /
    • 2009
  • Fuzzy neural ship controllers is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using simulink tools.

  • PDF

A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network (퍼지 신경망을 이용한 맹장염진단에 관한 연구)

  • 박인규;신승중;정광호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF

A study of improvement of control performance of ship by fuzzy neutral network (퍼지 신경회로망에 의한 선박의 제어성능 개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.671-672
    • /
    • 2008
  • Hybrid intelligent technique is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using Matlab.

  • PDF

Design of Intrusion Detection System Using Event Sequence Tracking (Event Sequence Tracking을 이용한 침입 감지 시스템의 설계)

  • 최송관;이필중
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.115-125
    • /
    • 1995
  • 본 논문에서는 컴퓨터 시스템에서 침입 감지 시스템을 설계함에 있어서 사용될 수 있는 새로운 방법인 Event Sequence Tracking 방법을 제안하였다. Event Sequence Tracking 방법에서는 컴퓨터 시스템의 공격방법을 크게 두가지로 분류한다. 첫번째는 일련의 시스템 명령어를 이용한 공격방법이고 두번째는 침입자 자신이 만들었거나 다른 사람으로부터 얻은 프로그램을 이용하는 방법이다. 첫번째 공격방법에 대한 감지방법은 시스템을 공격할 때 사용한 일련의 시스템 명령어들을 감사 데이타를 분석하여 찾아내고 이 결과를 기존에 알려진 공격 시나리오들과 비교하여 침입자를 찾아내는 방식이다. 두번째 공격방법에 대한 감지 방법은 보안 관리자가 정해놓은, 시스템에서 일반 사용자가 할 수 없는 행위에 관한 보안 정책에 따라 Key-Event 데이타 베이스를 만들고 여기에 해당하는 event의 집합을 감사 데이타에서 찾아내는 방법이다. Event Sequence Tracking 방법은 Rule-based Penetration Identification 방법의 일종으로서 시스템의 공격방법을 분류하여 컴퓨터 시스템에의 침입을 효과적으로 감지할 수 있다는 것과 rule-base의 생성과 갱신을 함에 있어서 보다 간단하게 할 수 있다는 장점을 갖는다.

  • PDF

A Study of Retrieval Model Providing Relevant Sentences in Storytelling on Semantic Web (시맨틱 웹 환경에서 적합한 문장을 제공하는 이야기 쓰기 도우미에 관한 연구)

  • Lee, Tae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.4
    • /
    • pp.7-34
    • /
    • 2009
  • Structures of stories, paragraphs, and sentences and inferences applied to indexing and searching were studied to construct the full-text and sentence retrieval system for storytelling. The system designed the database of stories, paragraphs, and sentences and the knowledge-base of inference rules to aid to write the story. The Knowledge-base comprised the files of story frames, paragraph scripts, and sentence logics made by mark-up languages like SWRL etc. able to operate in semantic web. It is necessary to establish more precise indexing language represented the sentences and to create a mark-up languages able to construct more accurate inference rules.

Response spectrum analysis considering non-classical damping in the base-isolated benchmark building

  • Chen, Huating;Tan, Ping;Ma, Haitao;Zhou, Fulin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.473-485
    • /
    • 2017
  • An isolated building, composed of superstructure and isolation system which have very different damping properties, is typically non-classical damping system. This results in inapplicability of traditional response spectrum method for isolated buildings. A multidimensional response spectrum method based on complex mode superposition is herein introduced, which properly takes into account the non-classical damping feature in the structure and a new method is developed to estimate velocity spectra from the commonly used displacement or pseudo-acceleration spectra based on random vibration theory. The error of forced decoupling method, an approximated approach, is discussed in the viewpoint of energy transfer. From the base-isolated benchmark model, as a numerical example, application of the procedure is illustrated companying with comparison study of time-history method, forced decoupling method and the proposed method. The results show that the proposed method is valid, while forced decoupling approach can't reflect the characteristics of isolated buildings and may lead to insecurity of structures.

A Rule-Based Data Mining Method among the Unrelated DataBase Table (비연계 DB 테이블상에서의 데이터 추출을 위한 규칙 기반의 데이터 마이닝 기법)

  • 김찬일;조대호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.220-224
    • /
    • 2000
  • 데이터 마이닝란 대량의 실제 데이터에서 묵시적이고 잠재적으로 유용한 정보를 추출하는 작업이다. 본 논문에서 서로 관계가 정의되지 않은 데이터베이스의 각 테이블간에서 필요한 정보를 추출 또는 가공하기 위해 데이터 마이닝 기법을 사용한다. 마이닝 기법인 연관 규칙은 어떤 사건이 일어나면 다른 사건이 일어나는 관련성을 의미하는 것이고, 제시된 규칙 기반의 데이터 마이닝 기법은 연관 규칙의 한 분야로서 데이터를 규칙 맞게 분류하는 기법이다. 이런 마이닝 기법을 구현하기 위해 인공지능 분야의 규칙 기반의 전문가 시스템을 사용하였고, 실 시스템인 GDS(Grating automatic Drawing System)에 적용하였다.

  • PDF