• Title/Summary/Keyword: Rudder force

Search Result 85, Processing Time 0.207 seconds

A Study on the Effect of Rudder Area with Reference to Changes in Span Distance on Course Stability of a Ship (타의 스팬길이에 따른 면적 변화가 침로안정성에 미치는 영향에 관한 연구)

  • Sohn, K.H.;Lee, G.W.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.1-14
    • /
    • 1996
  • Especially in the case of a full form ship, the stability on course can be considered to become severest among 4 items of criteria in Interim Standards for Ship Maneuverability adopted by IMO in 1993. The purpose of this study is to find some ideas for the improvement of stability on course through changes in rudder area with reference to span distance. In this paper, we established the formula on the relation between the experimental constants relevant to rudder normal force and hydrodynamic derivatives of hull-propeller-rudder system. We carried out various kinds of captive model test relevant to rudder normal force etc., and evaluated hydrodynamic derivatives of hull-propeller-rudder system, and analyzed the stability on course with the parameter of changes in rudder area. Furthermore, we also discussed effects of changes in rudder area on maneuvering performance including stability on course, based on computer simulation. As a result, it is clarified that there is a possibility that stability on course may become bad through an increase of rudder area. The reason for the bad stability on course is that the void space between the upper edge of rudder and the lower part of stern overhang decreases. This space change exerts a great influence on straightening coefficient of incoming flow to rudder in maneuvering motion, which has close relation to stability on course.

  • PDF

A Study on the High Lifting Device Equipped with the Trailing Edge Rotor for the Enhancement of Circulation Control (뒷날에 붙인 회전자로 순환유동을 강화하는 날개장치의 성능 연구)

  • Oh, Jung-Keun;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2010
  • For a long times it has been believed that the Magnus effect of the rotating cylinder could be utilized for the lifting devices applicable to marine practices. It has been reported that the rotating cylinder installed on upper deck of commercial vessel could play a energy saving role however the idea might be applicable in a very rare case in ship building practices. In this study special high lift rudder system equipped with the trailing edge rotor has been suggested in correspondence with the increasing requirement of greater rudder force. Through the numerical simulation it is cleared that the trailing edge rotor could play a role in enhancement of circulation and refinement of boundary layer of the rudder system. At the same time it is found out that the lift force of the rudder system without rotation of trailing edge rotor could be doubled when the circumferential velocity of the trailing edge rotor is equal to twice of the inflow velocity.

Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver

  • Pan, Yu-cun;Zhang, Huai-xin;Zhou, Qi-dou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.899-913
    • /
    • 2019
  • In order to provide a complementary perspective to the effects of the maneuvering motions on the unsteady propeller performance, the numerical simulation of the flow field of the hull-rudder- propeller system is performed by Unsteady Reynolds-averaged Naiver-Stokes (URANS) method. Firstly, the flow fields around the submarine model without the presence of propeller in straight ahead motion and the steady diving maneuvers with submergence rudder deflections of 4°, 8° and 12° are predicted numerically. The non-uniformity characteristic of the nominal wake field is exacerbated with the increase submergence rudder angle. Then the flow field around the SUBOFF-G submarine fitted with the 4381 propeller is simulated. The axial, transverse and vertical unsteady propeller forces in different maneuvering conditions are compared. In general, as the submarine maneuvers more violently, the harmonic amplitudes of the unsteady force at the 2BPF and 3BPF increased more significantly than that at BPF.

Experimental Verification on the Effect of the Gap Flow Blocking Devices Attached on the Semi-Spade Rudder using Flow Visualization Technique (유동가시화를 이용한 혼-타의 간극유동 차단장치 효과에 관한 실험적 검증)

  • Shin, Kwangho;Suh, Jung-Chun;Kim, Hyochul;Ryu, Keuksang;Oh, Jungkeun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.324-333
    • /
    • 2013
  • Recently, rudder erosion due to cavitation has been frequently reported on a semi-spade rudder of a high-speed large ship. This problem raises economic and safety issues when operating ships. The semi-spade rudders have a gap between the horn/pintle and the movable wing part. Due to this gap, a discontinuous surface, cavitation phenomenon arises and results in unresolved problems such as rudder erosion. In this study, we made a rudder model for 2-D experiments using the NACA0020 and also manufactured gap flow blocking devices to insert to the gap of the model. In order to study the gap flow characteristics at various rudder deflection angles($5^{\circ}$, $10^{\circ}$, $35^{\circ}$) and the effect of the gap flow blocking devices, we carried out the velocity measurements using PIV(Particle Image Velocimetry) techniques and cavitation observation using high speed camera in Seoul National University cavitation tunnel. To observe the gap cavitation on a semi-spade rudder, we slowly lowered the inside pressure of the cavitation tunnel until cavitation occurred near the gap and then captured it using high-speed camera with the frame rate of 4300 fps(frame per second). During this procedure, cavitation numbers and the generated location were recorded, and these experimental data were compared with CFD results calculated by commercial code, Fluent. When we use gap flow blocking device to block the gap, it showed a different flow character compared with previous observation without the device. With the device blocking the gap, the flow velocity increases on the suction side, while it decreases on the pressure side. Therefore, we can conclude that the gap flow blocking device results in a high lift-force effect. And we can also observe that the cavitation inception is delayed.

On Flow Charactistics around Special Rudders by PIV Measurement; Flapped and Water-blowing Rudder (PIV 계측에 의한 특수타 주위의 유동특성에 대하여; 플랩러더와 물분사러더)

  • Gim, Oxoc
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.200-207
    • /
    • 2017
  • The purpose in having a control surface on ships is to control the motion of the ship. The control surface may be composed entirely of a single movable surface or of a combination of fixed and movable portions. A control surface has one sole function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of this rotation and angle of attack then determine the manoeuvring characteristics of the ship. In this paper, two-dimensional flow characteristics of a flapped rudder and a water-blowing control rudder were accomplished respectively by PIV method in a circulating water channel. Model test has been carried out with different angles of attack of main foil (NACA 0012) and flap's deflection angles to predict the performance of the flapped rudder and the water-blowing control rudder. The 2-frame particle tracking method has been used to obtain the velocity distribution in the flow field. $Re{\fallingdotseq}3.0{\times}10^4$ has been used during the whole experiments and measured results have been compared with each other.

Control Effects of the Hydrodynamic Force of the Submerged NACA0018 arranging in a Row in a Uniform Stream (균일흐름 중에 놓인 병렬구조를 가진 몰수형 NACA0018의 간격변화가 유체력 제어효과에 미치는 영향)

  • Gim, Ok-Sok;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.325-330
    • /
    • 2010
  • An open water rudder test was carried out to figure out the flow characteristics around a twin rudder at $Re=1.5{\times}10^4$. In the analysis, the unique characteristics of a twin rudder, which affects rudder forces, were explained. The analysis includes varying angles of attack from 10 to 30 degrees. In this paper, the measured results have been compared with each other to predict the performance characteristics of a twin rudder's 2-dimensional section by 2-frame grey level cross correlation PIV method. The length L=0.75C between upper and lower rudders could be defined as the critical length.

Calculation of the Rudder Normal Force for a Horn Type Rudder and Twin Rudder (Horn Type 타(舵)와 한쌍(雙)의 타(舵)의 타직압력(舵直壓力) 계산(計算)에 관한 연구(硏究))

  • Seung-Keon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.27-31
    • /
    • 1990
  • To calculate the lift of a thin lifting surface like the ship-rudder, it is popular to replace the lifting surface by a series of vortices. Two methods, which are vortex lattice method and mode function method, are frequently used to distribute the vortices on the lifting surface. In this paper, the intermediate way of two mentioned calculation method is carried out to exploit the merits of them. The basic concept of this method is to divide the lifting surface with several strips in span-wise and replace vortices to the chord-wise at each strips. A horn type semi-balanced rudder is chosen for the real method, and the validity of the proposed calculation is pursued by the open water test of the same rudder. Finall, this method is applied to the calculation of the interference between the two homogenous rudders siting parallel to the free stream.

  • PDF

Usability of Cockpit Design and Musculoskeletal Discomfort in Korean Air Force Fighter Pilots (한국 공군 주력 전투기 조종실의 사용성과 조종사의 근 골격계 불편도에 대한 연구)

  • Byun, Seong-Nam;Lee, Dong-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.100-110
    • /
    • 1999
  • The objectives of this study are twofold: (1) to evaluate the cockpit of three Korean air force fighters such as F-4, F-5, and F-16 in an ergonomic perspective and (2) to measure the musculoskeletal discomfort of the fighter pilots. For the study, 369 air force pilots from 7 squadrons were surveyed. The study shows that the cockpit design of F-16 is superior to the others. However, F-4 is the worst among them. Statistical analyses reveal that the seat in the cockpit raised the most complaints, regardless of types of fighter planes. The main problems with the seat included inappropriate designs of the backrest angle, seat cushioning, and parachute harness. Also frequently cited are various control switches, control stick, rudder pedal, and the throttle. That these items lack human integration is found in remote positions and improper dimensions. The implications of these findings are discussed. The self-reported musculoskeletal complaints show that the main discomfort is on the back and neck. Also, the buttocks, shoulders, and the legs/knees are common sites of discomfort. A stepwise regression analysis shows that the back discomfort, is mainly caused by the use of the seat, rudder pedal, control stick, and switches. A Spearman rank correlation coefficient test also reveals that job dissatisfaction of the pilots is related to the complaints with the cockpit and musculoskeletal discomfort. These findings suggest that more comprehensive studies for cockpit design in the aspects of functional anthropometry of Korean pilots are needed to reduce the musculoskeletal discomfort.

  • PDF

A Numerical Study on the Geometry of Jet Injection Nozzle of a Coanda Control Surface

  • Seo, Dae-Won;Kim, Jong-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.36-54
    • /
    • 2008
  • A jet stream applied tangential to a curved surface in fluid increases lift force by strengthening circulation around the surface and this phenomenon is known as the Coanda effect. Many experimental and numerical studies have been performed on the Coanda effect and the results found to be useful in various fields of aerodynamics. Recently, preliminary studies on Coanda control surface are in progress to look for practical application in marine hydrodynamics since various control surfaces are used to control behaviors of ships and offshore structures. In the present study, the performance of a Coanda control surface with different geometries of the jet injection nozzle was surveyed to assess applicability to ship rudders. A numerical simulation was carried out to study flow characteristics around a section of a horn type rudder subjected to a tangential jet stream. The RANS equations, discretized by a cell-centered finite volume method were used for this computation after verification by comparing to the experimental data available. Special attentions have been given to the sensitivity of the lift performance of a Coanda rudder to the location of the slit (outlet) and intake of the gap between the horn and rudder surface at the various angles of attack. It is found that the location of the water intake is important in enhancing the lift because the gap functions as a conduit of nozzle generating a jet sheet on the rudder surface.

Side Force Modeling of Landing Gear and Ground Directional Controller Design for UAV (무인기용 착륙장치 측력 모델링 및 지상활주 제어기 설계)

  • Cho, Sung-Bong;Ahn, Jong-Min;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.997-1003
    • /
    • 2014
  • This paper describes modeling process to obtain precise landing gear model which is necessary to design a control law for ground auto-taxi, auto take-off/landing of UAV. In this paper, landing gear side force modeling is studied to complete a landing gear model of UAV. Side force modeling is performed by calculating cornering angle including steering angle. And ground directional controller is designed by using nose wheel steering and rudder steering at the same time to control course angle error. Accuracy of landing gear side force modeling and ground directional controller is proved by comparing of auto-taxi test results with simulation results.