• Title/Summary/Keyword: Rudder force

Search Result 85, Processing Time 0.021 seconds

A numerical and experimental study on the performance of a twisted rudder with wavy configuration

  • Shin, Yong Jin;Kim, Moon Chan;Lee, Joon-Hyoung;Song, Mu Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.131-142
    • /
    • 2019
  • In this paper, a Wavy Twisted Rudder (WTR) is proposed to address the discontinuity of the twisted section and increase the stalling angle in comparison to a conventional full-spade Twisted Rudder (TR). The wave configuration was applied to a KRISO Container Ship (KCS) to confirm the characteristics of the rudder under the influence of the propeller wake. The resistance, self-propulsion performance, and rudder force at high angles of the wavy twisted rudder and twisted rudder were compared using Computational Fluid Dynamics (CFD). The numerical results were compared with the experimental results. The WTR differed from the TR in the degree of separation flow at large rudder angles. This was verified by visualizing the streamline around the rudder. The results confirmed the superiority of the WTR in terms of its delayed stall and high lift-drag ratio.

Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow

  • Sun, Shuai;Li, Liang;Wang, Chao;Zhang, Hongyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.69-84
    • /
    • 2018
  • In order to analyze the characteristics of propeller exciting force, the hybrid grid is adopted and the numerical prediction of KCS ship model is performed for hull-propeller-rudder system by Reynolds-Averaged Navier Stokes (RANS) method and volume of fluid (VOF) model. Firstly, the numerical simulation of hydrodynamics for bare hull at oblique state is carried out. The results show that with the increasing of the drift angle, the coefficients of resistance, side force and yaw moment are constantly increasing, and the bigger the drift angle, the worse the overall uniformity of propeller disk. Then, propeller bearing force for hull-propeller-rudder system in oblique flow is calculated. It is found that the propeller thrust and torque fluctuation coefficient peak in drift angle are greater than that in straight line navigation, and the negative drift angle is greater than the positive. The fluctuation peak variation law of coefficient of side force and bending moment are different due to various causes.

Experimental Study on the Variation of Maneuvering Characteristics of Container Ship with Rudder Type (타의 종류에 따른 컨테이너선의 조종성능 특성 연구)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Kim, Sung-Pyo;Lee, Suk-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.28-33
    • /
    • 2004
  • Generally Horn-type rudders have been used for single propeller and single rudder system. The reason is that the rudder torques of Horn-type rudder are smaller than those of Spade rudder with same lift force. But it is found that the rudder cavitation occurs on a Horn-type rudder of fast container ship. In this paper the comparison results of Horn-type and Spade rudders are described. HPMM tests are carried out to compare the effects of two rudder types on the maneuverability of a ship. It is shown that the maneuvering performance of a ship equipped with Horn-type rudder is better than that equipped with Spade rudder by comparing the test results and maneuvering coefficients at scantling condition. The reason is that the movable part area of Horn-type rudder is about 14% larger than that of Spade rudder with same total area. And the rudder torque of Spade rudder is greater than that of Horn rudder. At ballast condition, however, the effect of rudder type is negligible.

An Experimental Comparison Study on Various Full-Spade Rudder Performance for Container Carrier (컨테이너선용 여러 가지 전타의 성능에 대한 실험적 비교연구)

  • Chun, Jang-Ho;Kim, Moon-Chan;Lee, Won-Joon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.42-46
    • /
    • 2013
  • Recently, according to the growth of demand about large container carrier, the studies for cavitation of semi-spade rudder were increased. In spite of many effort to solve, the fundamental solution can not be found. So, the studies for full-spade rudder are increasing to solve. In Pusan national university, the studies for full-spade twisted rudder and full-spade wavy twist rudder were carried out. However, most studies are carried out in numerical analysis and the many studies of experimental comparison between each rudder are not exist. This paper describe design history of full-spade rudder (twist rudder, wavy twist rudder) for KCS (KRISO Container Ship) and compare performance of each designed full-spade rudder about resistance and self-propulsion with conventional rudder (semi-spde rudder). The measurement about designed rudder's rudder force will be performed near future.

  • PDF

Optimizing Design for Rudder Horn (Rudder Horn 최적화 설계 방안)

  • Park, Sung-Geun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.77-80
    • /
    • 2006
  • In recent booming up of the ship building market, the supplying of large scale casting is difficult to keep the delivery schedule for ship yard because of the restrict manufacturer in Korea. And also, it is main cause to rise-up the cost of castings. This paper describes the outline of guidance of optimizing design for Rudder Horn Casting to reduce the risk of the delivery problem to ship yard.

  • PDF

Evaluation of Course Stability Performance for Tanker using CFD (CFD를 이용한 Tanker의 침로안정성 평가)

  • Hong, Chun-Beom;Yang, Hee-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.523-529
    • /
    • 2008
  • The course stability performance for tankers is evaluated by computational fluid dynamics. In the present work, a Reynolds averaged Navier-Stokes (RANS) code is applied to a maneuvering problem covering the pure drift and yaw motions. The purposes of this study are to evaluate the hydrodynamic force in the bare hull (AFRAMAX) in pure drift and yaw motion and to provide information about the trends in the forces and moments when the rudder angles are varied. The flow simulation is performed by FLUENT. The CFD code is examined to find the optimistic computational condition such as size of grid, turbulence model and initial condition. The hydrodynamic derivatives in drift and pure yaw motion are estimated by the numerical simulation, and then the stability levers are calculated. It is confirmed that the computations show the superiority and inferiority of course stability performance according to the hull forms. Finally, the CFD code is applied to the estimation of the rudder forces when the rudder angles are varied. The propeller effect expressed by the body force distribution is also included.

Viscous Flow Analysis for the Rudder Section Using FLUENT Code (FLUENT 코드를 이용한 타 단면의 점성 유동 해석)

  • 부경태;한재문;송인행;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.30-36
    • /
    • 2003
  • Lately, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. However, cavitation is not prone to occur in model experiments because of low Reynolds number. In order to predict the cavitation phenomena, the - analysis of the viscous flow in the rudder gap is positively necessary In this study, numerical calculation was applied to the two-dimensional flow around the rudder gap using FLUENT code. The velocity and pressure field were numerically acquired and cavitation phenomena could be predicted. And the case that the round bar was installed in the rudder gap was analyzed. For reducing the acceleration force when fluid flow through the gap, modified rudder shape is proposed, It is shown that modified rudder shape restrain the pressure drop at the entrance of the gap highly both in the computational results and in the model experiment, and reduce the cavitation bubbles.

Cavitating-Flow Characteristics around a Horn-Type Rudder (혼 타 주위의 캐비테이팅 유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seak-Ho;Kim, Jung-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

Control effects of the hydrodynamic force of twin rudder in a uniform stream (균일 흐름중에 놓인 쌍동타의 간격변화가 유체력 제어효과에 미치는 영향)

  • Shon, Chang-Bae;Oh, Woo-Jun;Ku, Youn-Kyoung;Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.387-388
    • /
    • 2010
  • An open water rudder test was carried out to figure out the flow characteristics around a twin rudder at $Re=1.5\times10^4$. In the analysis, the unique characteristics of a twin rudder, which effects rudder farces, were explained. The analysis is included varying angles of attack fram 10 to 30 degree. In this paper, the measured results has been compared with each other to predict the performance characteristics of a twin rudder's 2-dimensional section by 2-frame grey level cross correlation PIV method. The side force of the rudder could be mainly improved at 0.75L.

  • PDF

FLOW CHARACTERISTICS AROUND A RUDDER IN OPEN LATER CONDITION (단독 타 주위의 유동 특성에 대한 연구)

  • Choi, J.E.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • The flow characteristics around a rudder in open water condition is analyzed by the computational method. Reynolds averaged Navier-Stoke's equation is utilized for the computation. The computational hydrodynamic force coefficients are verified through comparing with the experimental results. The information of these flow characteristics is necessary to predict cavitation and maneuvering performances, to estimate steering gear capacitance, and to get the bending moment which is useful for the structural analysis. The pressure distribution, the three-dimensional flow separation, and the tip vortices are investigated. The pattern of the three-dimensional flow separation is analyzed utilizing a topological rule. The tip vortices are also investigated through a visualization technique.