• 제목/요약/키워드: Rudder

Search Result 393, Processing Time 0.027 seconds

Experimental Study on the Variation of Maneuvering Characteristics of Container Ship with Rudder Type (타의 종류에 따른 컨테이너선의 조종성능 특성 연구)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Kim, Sung-Pyo;Lee, Suk-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.28-33
    • /
    • 2004
  • Generally Horn-type rudders have been used for single propeller and single rudder system. The reason is that the rudder torques of Horn-type rudder are smaller than those of Spade rudder with same lift force. But it is found that the rudder cavitation occurs on a Horn-type rudder of fast container ship. In this paper the comparison results of Horn-type and Spade rudders are described. HPMM tests are carried out to compare the effects of two rudder types on the maneuverability of a ship. It is shown that the maneuvering performance of a ship equipped with Horn-type rudder is better than that equipped with Spade rudder by comparing the test results and maneuvering coefficients at scantling condition. The reason is that the movable part area of Horn-type rudder is about 14% larger than that of Spade rudder with same total area. And the rudder torque of Spade rudder is greater than that of Horn rudder. At ballast condition, however, the effect of rudder type is negligible.

An Experimental Comparison Study on Various Full-Spade Rudder Performance for Container Carrier (컨테이너선용 여러 가지 전타의 성능에 대한 실험적 비교연구)

  • Chun, Jang-Ho;Kim, Moon-Chan;Lee, Won-Joon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.42-46
    • /
    • 2013
  • Recently, according to the growth of demand about large container carrier, the studies for cavitation of semi-spade rudder were increased. In spite of many effort to solve, the fundamental solution can not be found. So, the studies for full-spade rudder are increasing to solve. In Pusan national university, the studies for full-spade twisted rudder and full-spade wavy twist rudder were carried out. However, most studies are carried out in numerical analysis and the many studies of experimental comparison between each rudder are not exist. This paper describe design history of full-spade rudder (twist rudder, wavy twist rudder) for KCS (KRISO Container Ship) and compare performance of each designed full-spade rudder about resistance and self-propulsion with conventional rudder (semi-spde rudder). The measurement about designed rudder's rudder force will be performed near future.

  • PDF

A Study on Optimized Rudder Design by Comparison and Analysis of Design Process of Rudder Device. (대형 조선소 타 장치 설계 프로세서 비교 및 분석에 의한 표준 타 장치 설계 프로세서 제안)

  • Kim, Sang-Hyun;Kim, Hyun-Jun;Jun, Hee-Chul;Yoon, Seung-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.99-111
    • /
    • 2010
  • Recently, a very large vessel's maneuvering performance, rudder performance and rudder design's importance is considered to be an important subject. There have been few studies on the design process of rudder device before. The aim of this paper is to investigate a design process of rudder device and to propose a generalized design process of rudder device. Firstly, we investigated the rudder device design process of Korean major shipyards. And the differences of a torque calculation method, rudder section design, maneuvering performance examination method, etc were analyzed theoretically. Secondly, the design process of rudder device was divided into concept design, initial design and detail design. In concept design, a rudder area was estimated and its validity was examined. In initial design, rudder profile and design method has been selected through rudder form determination process. And principal dimension and steering gear capacity were determined. Maneuvering performance was also examined by simulation tool. In detail design, design criteria considered in rudder initial design has been investigated thoroughly. Also a rudder torque, rudder cavitation performance and rudder structure analysis were estimated. And maneuvering performance was also examined by model test. Finally, based on the results of investigation, the design process of rudder device was generalized and proposed.

Full Scale Measurement Method for Rudder Torque & Force (Rudder Torque 및 Force 실선 계측 Method)

  • Lim, Jong-Ho;Park, Kyung-Rak;Ok, Yu-Kwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.1-4
    • /
    • 2011
  • The full spade rudder for the high speed has advantage to prevent gap cavitation of the rudder. DSME has developed the full spade rudder and GL has carried out CFD analysis and FE analysis to confirm strength and fatigue for DSME and Owner. Necessarily, it needs to compare rudder torque & rudder force between CFD, FE analysis and full scale measurement. This report introduces the measurement method and application of strain gauge for measuring the rudder torque and rudder force for the 8,400 TEU container ship.

  • PDF

A numerical and experimental study on the performance of a twisted rudder with wavy configuration

  • Shin, Yong Jin;Kim, Moon Chan;Lee, Joon-Hyoung;Song, Mu Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.131-142
    • /
    • 2019
  • In this paper, a Wavy Twisted Rudder (WTR) is proposed to address the discontinuity of the twisted section and increase the stalling angle in comparison to a conventional full-spade Twisted Rudder (TR). The wave configuration was applied to a KRISO Container Ship (KCS) to confirm the characteristics of the rudder under the influence of the propeller wake. The resistance, self-propulsion performance, and rudder force at high angles of the wavy twisted rudder and twisted rudder were compared using Computational Fluid Dynamics (CFD). The numerical results were compared with the experimental results. The WTR differed from the TR in the degree of separation flow at large rudder angles. This was verified by visualizing the streamline around the rudder. The results confirmed the superiority of the WTR in terms of its delayed stall and high lift-drag ratio.

A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack (Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구)

  • Tae, Hyun June;Shin, Young Jin;Kim, Beom Jun;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

Experimental Study of the Flat & Twisted Rudder Characteristics Using Rudder Dynamometer in LCT (LCT에서 방향타 동력계를 이용한 평판 및 비틀림 방향타 특성의 실험적 연구)

  • Ahn, Jong-Woo;Paik, Bu-Geun;Park, Young-Ha;Seol, Han-Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.391-399
    • /
    • 2021
  • In order to investigate force and cavitation characteristics for the flat & twisted rudders in the Large Cavitation Tunnel (LCT), the rudder dynamometer was designed and manufactured. The measuring capacities of lift, drag and moment are ±1000 N, ±2000 N, and ±150 N-m, respectively. The present dynamometer uses the actuator with a harmonic drive to control the rudder angle without backlash. As the target ship is a military ship with twin shaft, each dynamometer was installed above the port & starboard rudders. After the installation of the model ship with all appendages, the model test composed of rudder force measurement and cavitation observation was conducted for the existing flat rudder & the designed twisted rudder. While the flat rudder showed the big difference of lift & moment between port & starboard, the twisted rudder presented a similar trend. The cavitation of the twisted rudder showed better characteristics than that of the flat rudder. Another set of model tests were conducted to investigate rudder performance by the change of the design propeller. There was little difference in rudder performance for the design propellers with slight geometric change. Through the model test, the characteristics of the flat & twisted rudders were grasped. On the basis of the present study, it is thought that the rudder with better performance would be developed.

A Numerical Study on the Flow around a Rudder behind Low Speed Full Ship

  • Lee, Young-Gill;Yu, Jin-Won;Kang, Bong-Han;Pak, Kyung-Ryeung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.41-52
    • /
    • 2008
  • The development of a high-lift rudder is needed because low speed full ships such as the VLCC(Very Large Crude oil Carrier) have difficulty for obtaining enough lifting force from a common rudder. The rudder of a ship is generally positioned behind the hull and propeller. Therefore, rudder design should consider the interactions between hull, propeller, and rudder. In the present study, the FLUENT code and body fitted mesh systems generated by the GRIDGEN program are adopted for the numerical simulations of flow characteristics around a rudder that is interacting with hull and propeller. Sliding mesh model(SMM) is adopted to analyze the interaction between propeller rotation and wake flow behind hull. Several numerical simulations are performed to compare the interactions such as hull-rudder, propeller-rudder, and hull-propeller-rudder. Also, we consider relationships between the interactions. The results of present numerical simulations show the variation of flow characteristics by the interaction between hull, propeller, and rudder, and these results are compared with an existing experimental result. The present study demonstrates that numerical simulations can be used effectively in the design of high-lift rudder behind low speed full ship.

An Experimental Evaluation of the Coanda Jet Applied High Efficient Rudder System for VLCC

  • Park, Bong-Joon;Kim, Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • To keep the ocean environment from pollutions, strict international requirements on the controllability are arisen to the VLCC. Especially in low speed operations near the harbor, the VLCC is often supported by tug to replenish the insufficient rudder force. When water jet is blown to the flapped rudder, the Coanda effect induces a high-lift force by delaying stall and re-enforcing circulation in a large angle of attack (Lachmann 1961, Ahn 2003). Based on numerous research efforts, the rudder system supported by the Coanda effect was devised and its performances were evaluated in the towing tank for a large VLCC model. Hydrodynamic forces acting on the rudder system were measured with a water jet blowing on the rudder surface and compared with those acting on a conventional rudder. The effectiveness of the new rudder system was proven through an experimental evaluation.

Study on the Angle-of-Attack Characteristics of the Rudder in Rotating Propeller Flow (프로펠러 회전류에서 작동하는 방향타의 받음각 특성 연구)

  • Jung, Jae Hwan;Baek, Dong Geun;Yoon, Hyun Sik;Kim, Ki-Sup;Paik, Bu-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.421-428
    • /
    • 2013
  • This study aims at numerically investigating the angle of attack characteristics of the rudder behind a rotating propeller. The rotating propeller of 5 blades and the full spade rudder are placed in the numerical water tunnel with a uniform flow condition to consider propeller-rudder interaction. The turbulence closure model is employed to simulate the three-dimensional unsteady incompressible viscous turbulent flow around the propeller and the rudder. The present numerical method are well verified by comparing with the experimental results. In order to identify the dependence of the angle of attack of the rudder on the rudder angle, a wide range of rudder angles is considered. The present study carried out the quantitative and qualitative analysis of the angle of attack in terms of the pressure distribution, streamlines and the evaluation of the flow incidence, resulting in that the angle of attack increases as we move from the root and the tip to the center of the rudder, regardless of the rudder angle. The distribution of the angle-of-attack along the span is strongly affected by rotating propeller flow and rudder angle. Consequently, the distribution of the angle-of-attack of the oncoming flow against the rudder leading edge plays a role in determination of rudder performance.