• Title/Summary/Keyword: Rubber wheel system

Search Result 33, Processing Time 0.024 seconds

An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System (고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Young;Cho, Sanghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

Study on Turnout System(Rubber Wheel Type) & Guideway for AGT (고물차륜용 경량전철 분기기 및 안내궤조에 대한 연구)

  • Park June-Taek;Kim Soon-Chul;Kim Jun-Sik;Lee An-Ho;Seong Tack-Ryong
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.349-355
    • /
    • 2003
  • Traffic congestion caused by cverpopulation has a major detrimental effect on bringing about social and economic problems ia city area. Therefore Un order to maintain and sustain smooth flow of railway system, we are willing to introduce Light Rail Transit System. Rubber wheel type and guideway far AGT have been concentrated on our study Especially, the prototype of LRT turnout system has been developed. Furthermore, the structural analysis for the guideway system has been completed to secure reliability for the LRT system. In the near future, the tumout system of rubber wheel and guideway shall be applied in Korea. We hope reliability fer the system shall be secured without any major difficulties. As a result, we expect to expedite the localization of rubber wheel type and guideway for AGT.

  • PDF

Optimum Design of Steel Box Girder Considering Dynamic Characteristics of LRT with Rubber Wheel (경량전철 고무차륜 AGT 하중의 동적특성을 고려한 강박스거더의 단면 최적설계)

  • Lee Hee-Up;Lee Jun S.;Bang Choon-seok;Choi Il-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1197-1204
    • /
    • 2004
  • The metropolitan cities and operation companies of urban transit railway are driving to construct the LRT(light rail transit) system because of the advantage of construction cost and environmental serviceability. This study suggests the optimal design method of steel box girder considering dynamic characteristics of LRT with rubber wheel. The behavior and design constraints are formulated based on the structural design criteria for LRT. Genetic algorithm is applied to the minimum weight design of structural system. A typical example is solved to illustrate the applicability of the proposed minimization algorithm. From the results of application example, the optimum design of steel box girder is successfully accomplished. Therefore, this system can act as a consultant to assist novice designers in the design of steel box girder for LRT with rubber wheel.

  • PDF

A Study on the Vibration Analysis of an Automobile Steering System (승용차 스티어링 칼럼 시스템의 진동해석에 관한 연구)

  • 김찬묵;김도연
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.494-503
    • /
    • 1998
  • In this paper, in order to analyze dynamic characteristics of an automobile steering system consisting of many components, natural frequencies and transfer functions of each component and the total system are found on a FFT analyzer by experiments. Then, the data are transmitted to a commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of a rubber coupling in column and telescoping effects on system are considered. C.A.E commercial programs are used to compare with the results of experiments. For the finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring element. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency, while the column mode is main mode at higher. The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

The Modelling of vehicle and Applying the Optimal Design Values of Engine Rubber Mounts (차량의 모델링과 엔진마운트 최적설계값의 적용)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.129-143
    • /
    • 1998
  • The vibrations of steering wheel are required to be reduced for convenient ride quality and good controllability. This phenomenon, vibration of steering wheel, is occured by interaction with suspension system, steering system, vehicle body, engine/transmission and tire complicately. But reviewing the current research activities, most researches are performed for the vibration analysis of steering wheel with a simple model, and mot easy to be applied to the variation of each component element connected with steering system as well as that of the steering system. In this study, suspension system and steering system are modelled by the T.L.H. coordinate system which is usually used by a passenger car maker. Also, rigid body motions of engine and elastic motions of vehicle body in the previous study are considered. Derive the equation of motion in 29 d.o.f. and the vibration of steering wheel is analyzed numerically and verify the midelling of steering system by comparison with test results for real car. And then, the optimal design values of the engine mount system obtained from the previous study are applied to the verified steering system model and investigate the effects of various engine mount design values on the vibration of steering wheel.

  • PDF

Dynamics of an AGT System Light Rail Transit with Rubber Tires (고무차륜 AGT시스템 경전철의 동특성 해석)

  • 전광식;이우식;윤성호
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.135-142
    • /
    • 1999
  • This paper deals with dynamic characteristics of automated guideway transit vehicle with rubber tires. Several models for guideway system of LRT(Light Rail Transit) have been Proposed because of the necessity of guideway system for LRT with rubber tires on exclusive rail unlike steel tires. Here, steering system and bogie system are investigated to compare with dynamic characteristics. On selecting guideway system, the way of vehicle operation should be considered and simultaneously the dynamic characteristics of the vehicle must be evaluated with respect to each guideway. The results show that stability is essential for vehicle with steering system, and that single-axle bogie system gives the good stability, though it is necessary to reduce the guide-wheel force

  • PDF

An Analysis of Dynamic Characteristics for Running Safety Improvement of the Rubber Tired AGT Localization Bogie (고무차륜 경량전철 국산화 대차의 주행안전성 향상을 위한 동특성 해석)

  • Eom, Beom-Gyu;Han, Byeong-Yeon;An, Cheon-Heon;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1894-1904
    • /
    • 2011
  • The Light Rail Transit (LRT) System which has medium transport capacity between subway and bus(5,000-25,000 persons per hour) is the most advanced transportation system. It has many benefits, cheap construction, operational costs through driverless and flexible route planning. Also, the rubber tired AGT (K-AGT) of various LRT has a rubber wheels and side guide. The side guide type has an many advantages. but occur a vibration and friction noise through contact between guide rail and wheel. Most of point that decreased comport is vibration thorough the guide contact. In this paper, It is purpose to improve the maximum running speed of rubber tired AGT localization bogie which is currently developed from 70km/h to 80km/h. To satisfy comport index of railway vehicle that is required in performance test. we examined coefficient of bogie suspension which is designed.

  • PDF

A Train Position Detection Method by Inductive Radio Line (유도무선에 의한 열차 위치검지 방식)

  • Joung, E.J.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.788-790
    • /
    • 1993
  • In the train position defection for the rail car, which is not able to obtain the short circuit between the track circuit and the wheel, the methods by the inductive radio of non-contact type are applicated. It is represented the principles and the methods of the inductive radio train detection on MLU, Transrapid, HSST, M-Bahn, and People Mover for MAGLEV, on Kobe system for the rubber-tired vehicle, and on ICE for wheel-on-rail.

  • PDF

The Design of Hydraulic Brake Control System used on Blending Brake Function (혼합제동기능을 이용한 유압제동 제어시스템 설계)

  • Lee, Woo-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1809-1812
    • /
    • 2013
  • The bogie of monorail vehicles applies rubber wheel system not steel wheel system. In addition, The structure of the bogie is very complicated because vehicle operates on the elevated road and vehicle drives with wrapping the guide way. When the monorail vehicle applies air brake system, lower device of vehicle may be complex and some devices may be limited. On the other hand, hydraulic brake equipment is compact and not weighing. Braking force is also outstanding compared with air brake so the hydraulic brake equipment is suitable for monorail vehicle. Also urban transit system such as monorail, applies mixed system both friction brake and electric brake in order to save electric energy. But application case of hydraulic brake in the country is very rare because hydraulic brake have difficulty in satisfaction of control requirement and maintenance. Therefore, this study suggests ways to design hydraulic brake system with blending brake for monorail vehicle and applies the ways to future monorail.