• Title/Summary/Keyword: Ru CMP

Search Result 15, Processing Time 0.018 seconds

Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization (Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향)

  • Lee, Sang-Ho;Lee, Sung-Ho;Kang, Young-Jae;Kim, In-Kwon;Park, Jin-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.

Development and Characterization of Ru CMP Slurry (Ru CMP Slurry의 개발 및 특성평가)

  • Kim, In-Kwon;Kwon, Tae-Young;Park, Jin-Goo;Park, Hyung-Soon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.57-58
    • /
    • 2006
  • In MIM (metal insulator metal) capacitor, Ru (ruthenium) has been suggested as new bottom electrode due to its excellent electrical performance, a low leakage of current and compatibility to the high dielectric constant materials. In this case of Ru bottom electrode, CMP (chemical mechanical planarization) process was needed m order to planarize and isolate the bottom electrode. In this study, the effect of chemical A on polishing and etching behavior was investigated as functions of chemical A concentration, abrasive particle and pressure. Chemical A was used as oxidant and etchant. The thickness of passivation layer on the treated Ru surface increased with the increase of chemical A concentration. The etch rate and removal rate of Ru were increased by the addition of chemical A. The removal rate was highest m slurry of pH 9 with the addition of 0.1 M chemical A and 2 wt% alumina at 4 psi. The maximum removal rate is about 80 nm/min.

  • PDF

Research Trends on Chemical Mechanical Polishing Using Ultraviolet Light (자외선 광을 활용하는 화학기계적 연마에 관한 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.247-254
    • /
    • 2022
  • Chemical mechanical polishing (CMP) is a hybrid surface-polishing process that utilizes both mechanical and chemical energy. However, the recently emerging semiconductor substrate and thin film materials are challenging to process using the existing CMP. Therefore, previous researchers have conducted studies to increase the material removal rate (MRR) of CMP. Most materials studied to improve MRR have high hardness and chemical stability. Methods for enhancing the material removal efficiency of CMP include additional provision of electric, thermal, light, mechanical, and chemical energies. This study aims to introduce research trends on CMP using ultraviolet (UV) light to these methods to improve the material removal efficiency of CMP. This method, photocatalysis-assisted chemical mechanical polishing (PCMP), utilizes photocatalytic oxidation using UV light. In this study, the target materials of the PCMP application include SiC, GaN, GaAs, and Ru. This study explains the photocatalytic reaction, which is the basic principle of PCMP, and reviews studies on PCMP according to materials. Additionally, the researchers classified the PCMP system used in existing studies and presented the course for further investigation of PCMP. This study aims to aid in understanding PCMP and set the direction of future research. Lastly, since there have not been many studies on the tribology characteristics in PCMP, research on this is expected to be required.

Effects of Chemical and Abrasive Particles for the Removal Rate and Surface Microroughness in Ruthenium CMP (Ru CMP 공정에서의 화학액과 연마 입자 농도에 따른 연마율과 표면 특성)

  • Lee, Sang-Ho;Kang, Young-Jea;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1296-1299
    • /
    • 2004
  • MIM capacitor has been investigated for the next generation DRAM. Conventional poly-Si bottom electrode cannot satisfy the requirement of electrical properties and comparability to the high k materials. New bottom electrode material such as ruthenium has been suggested in the fabrication of MIM structure capacitor. However, the ruthenium has to be planarized due to the backend scalability. For the planarization CMP has been widely used in the manufacture of integrated circuit. In this research, ruthenium thin film was Polished by CMP with cerium ammonium nitrate (CAN)base slurry. HNO3 was added on the CAN solution as an additive. In the various concentration of chemical and alumina abrasive, ruthenium surface was etched and polished. After static etching and polishing, etching and removal rate was investigated. Also microroughness of surface was observed by AFM. The etching and removal rate depended on the concentration of CAN, and HNO3 accelerated the etching and polishing of ruthenium. The reasonable removal rate and microroughness of surface was achieved in the 1wt% alumina slurry.

  • PDF