Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.717-720
/
2020
An indoor localization system that uses Wi-Fi RSSI signals for localization gives accurate user position results. The conventional Wi-Fi RSSI signal based localization system uses raw RSSI signals from access points (APs) to estimate the user position. However, the RSSI values of a particular location are usually not stable due to the signal propagation in the indoor environments. To reduce the RSSI signal fluctuations, shadow fading, multipath effects and the blockage of Wi-Fi RSSI signals, we propose a Wi-Fi localization system that utilizes the advantages of Wi-Fi RSSI heat maps. The proposed localization system uses a regression model with deep convolutional neural networks (DCNNs) and gives accurate user position results for indoor localization. The experiment results demonstrate the superior performance of the proposed localization system for indoor localization.
Location-based service (LBS) is becoming an important part of the information technology (IT) business. Localization is a core technology for LBS because LBS is based on the position of each device or user. In case of outdoor, GPS - which is used to determine the position of a moving user - is the dominant technology. As satellite signal cannot reach indoor, GPS cannot be used in indoor environment. Therefore, research and study about indoor localization technology, which has the same accuracy as an outdoor GPS, is needed for "seamless LBS". For indoor localization, we consider the IEEE802.11 WLAN environment. Generally, received signal strength indicator (RSSI) is used to obtain a specific position of the user under the WLAN environment. RSSI has a characteristic that is decreased over distance. To use RSSI at indoor localization, a mathematical model of RSSI, which reflects its characteristic, is used. However, this RSSI of the mathematical model is different from a real RSSI, which, in reality, has a sensitive parameter that is much affected by the propagation environment. This difference causes the occurrence of localization error. Thus, it is necessary to set a proper RSSI model in order to obtain an accurate localization result. We propose a method in which the parameters of the propagation environment are determined using only RSSI measurements obtained during localization.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.10a
/
pp.473-476
/
2007
Location determination of mobile user via RSSI approach has received ample attention from researchers lately. However, it remains a challenging issue due to the complexities of RSSI signal propagation characteristics, which are easily exacerbated by the mobility of user. Hence, a segmentation-based linear spline interpolation method is proposed to cater for the dynamic fluctuation pattern of radio signal in complex environment. This optimization algorithm is proposed in addition to the current radiolocation's (CC2431, Chipcon, Norway) algorithm, which runs on IEEE802.15.4 standard. The enhancement algorithm involves four phases. First phase consists of calibration model in which RSSI values at different static locations are collected and processed to obtain the mean and standard deviation value for the predefined distance. RSSI smoothing algorithm is proposed to minimize the dynamic fluctuation of radio signal received from each reference node when the user is moving. Distances are computed using the segmentation formula obtain in the first phase. In situation where RSSI value falls in more than one segment, the ambiguity of distance is solved by probability approach. The distance probability distribution function(pdf) for each distances are computed and distance with the highest pdf at a particular RSSI is the estimated distance. Finally, with the distances obtained from each reference node, an iterative trilateration algorithm is used for position estimation. Experiment results obtained position the proposed algorithm as a viable alternative for location tracking.
KIPS Transactions on Computer and Communication Systems
/
v.6
no.9
/
pp.369-376
/
2017
Recently, an RSSI-based fingerprinting localization technology has been widely used in indoor location-based services. In the conventional fingerprinting method, as many APs as possible are used to increase the accuracy of location estimation. In another study, a part of APs having the strongest RSSI signal intensity are selected and used to reduce the time spent for positioning. However, it does not reflect the influence of RSSI occurred from the changes of the surrounding environments such as human movement or moving obstacles in a real environment. The environmental changes may cause the difference between the predicted RSSI signal strength value and the measured value, and thus occur an unpredictable error in the position estimation. Therefore, in order to mitigate the error caused by environmental factors, it is necessary to select APs suitable for indoor positioning estimation considering the changes in the surrounding environments. In this paper, we propose a method to select stable APs considering the influence of surrounding environments and derive a suitable positioning algorithm. In addition, we compare and analyze the performance of the proposed method with that of the existing AP selection methods through experiments.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.2
/
pp.63-68
/
2017
In this paper, Distance recognition measurement using distance calculation correction algorithm, was realization through LED dimming control. The calculation values for the RSSI average filtering and the RSSI feedback filtering were calculated and applied to reduce the error of the RSSI value measured from a long distance. It was confirmed that the RSSI values through the average filtering and the RSSI values measured by setting the coefficient value of the feedback filtering to 0.5 were ranged from -61 dBm to - 52.5 dBm, which shows irregular and high values decrease slightly as much as about -2 dBm to -6 dBm as compared to general measurements. A distance calculation correction algorithm to improve the accuracy was applied, which confirmed that as the distance increases, the range of errors decreases. In conclusion, unstable signals were corrected using the RSSI measurement result filtering, and the distance calculation correction algorithm was applied and performed to reduce the range of errors. In addition, RGB colors were implemented by LED to indicate the distance determination and the signal stability.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.11
/
pp.2172-2178
/
2007
In indoor environment, the combination of the two variations, large scale(path loss) and small scale(fading), leads to non-linear variation of RSSI(received signal strength indicator) values as distance varied. This has been one of the difficulties for indoor location estimation. This paper presents new findings on indoor RSSI characterization for more accurate model building. Experiments have been done statistically to find overall trend of RSSI values at different places and times within the same room. From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. These two factors are directly indicated by the two main parameters of path loss model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. The temporal parameter also has a large scale variation effect that is slowly time varying due to environmental changes. Using this relationship, the characterization for location estimation can be more efficient and accurate.
Wi-Fi Received Signal Strength Indicator (RSSI) is considered one of the most important sensor data types for indoor localization. However, collecting a RSSI fingerprint, which consists of pairs of a RSSI measurement set and a corresponding location, is costly and time-consuming. In this paper, we propose a Wi-Fi RSSI learning technique without true location data to overcome the limitations of static database construction. Instead of the true reference positions, inertial measurement unit (IMU) data are used to generate pseudo locations, which enable a trainer to move during data collection. This improves the efficiency of data collection dramatically. From an experiment it is seen that the proposed algorithm successfully learns the unsupervised Wi-Fi RSSI positioning model, resulting in 2 m accuracy when the cumulative distribution function (CDF) is 0.8.
Proceedings of the Korean Society of Computer Information Conference
/
2017.07a
/
pp.162-163
/
2017
IoT 기술의 발달로 지능적 관계를 형성하는 사물 공간 연결망으로 다양한 산업분야에 활용되고 있으며, IoT 시스템을 구축하기 위한 무선 통신 기술들도 연구되고 있다. Zigbee는 대표적인 무선 통신 표준 기술로 IoT의 Smart Home, Smart Led와 같은 분야에서 활용되고 있다. Zigbee 장비의 commissioning 기법은 사용자를 고려한 IoT 환경에서는 해결해야 할 과제이며, RSSI를 통하여 각각의 장비를 식별돼야 할 필요성이 있다. 본 논문에서는 RSSI 신호세기를 필터를 통하여 정렬하는 Zigbee Commissioning 기법을 제안한다.
There have recently been various services that use indoor location estimation technologies. Representative methods of location estimation include fingerprinting and triangulation, but they lack accuracy. Various kinds of research which apply existing location estimation methods like AOA, TOA, and TDOA are being done to solve this problem. In this paper, we study the location estimation algorithm based on AOA using a RSSI difference in indoor environments. We assume that there is a single AP with four antennas, and estimate the angle of arrival based on the RSSI value to apply the AOA algorithm. To compensate for RSSI, we use a recursive averaging filter, and use the corrected RSSI and the Pythagorean theorem to estimate the angle of arrival. The results of the experiment, show an error of 18% because of the radiation pattern of the four non-directional antennas arranged at narrow intervals.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.75-80
/
2021
Positioning technology is performing important functions in augmented reality, smart factory, and autonomous driving. Among the positioning techniques, the positioning method using beacons has been considered a challenging task due to the deviation of the RSSI value. In this study, the position of a moving object is predicted by training a neural network that takes the RSSI value of the receiver as an input and the distance as the target value. To do this, the measured distance versus RSSI was collected. A neural network was introduced to create synthetic data from the collected actual data. Based on this neural network, the RSSI value versus distance was predicted. The real value of RSSI was obtained as a neural network for generating synthetic data, and based on this value, the coordinates of the object were estimated by learning a neural network that tracks the location of a terminal in a virtual environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.