• Title/Summary/Keyword: Routing table

Search Result 200, Processing Time 0.021 seconds

A Proactive Dissemination Protocol using Residual Energy and Signal Strength for WSNs (무선 센서 네트워크에서 에너지 잔량과 신호세기를 이용한 데이터 전송 프로토콜)

  • Park, Soo-Yeon;Kim, Moon-Seong;Jeong, Eui-Hoon;Bang, Young-Cheo
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.33-39
    • /
    • 2010
  • In this paper, a data dissemination protocol that transmits data collected for Wireless Sensor Networks (WSNs) is newly proposed, and the proposed proactive protocol takes into account energy consumption minimized and delay time disseminated. The well-known SPMS (Shortest Path Mined SPIN) forms the shortest path-based routing table obtained by Bellman Ford Algorithm (BFA) and disseminates data using a multi-hop path in order to minimize energy consumption. The mentioned properties of SPMS cause memory burden to create and maintain the routing tables. In addition, whenever BFA is executed, it is necessary to suffer from the energy consumption and traffic occurred. In order to overcome this problem, a proactive dissemination protocol using Residual Energy and Signal Strength, called RESS, is proposed in this paper. Simulation results show that RESS outperforms SPMS up to 84% in terms of the number of traffic messages and the transmitted delay time of RESS is similar to that of SPMS using the shortest path.

Collaboration Model Design to Improve Malicious Node Detection Rate in MANET (MANET에서 악의적 노드 탐지율 향상을 위한 협업모델 설계)

  • Shin, Eon-Seok;Jeon, Seo-In;Park, Gun-Woo;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.35-45
    • /
    • 2013
  • MANET has a weak point because it allows access from not only legal nodes but also illegal nodes. Most of the MANET researches had been focused on attack on routing path or packet forwarding. Nevertheless, there are insuffcient studies on a comprehensive approach to detect various attacks on malicious nodes at packet forwarding processes. In this paper, we propose a technique, named DTecBC (detection technique of malicious node behaviors based on collaboration), which can handle more effciently various types of malicious node attacks on MANET environment. The DTecBC is designed to detect malicious nodes by communication between neighboring nodes, and manage malicious nodes using a maintain table. OPNET tool was used to compare with Watchdog, CONFIDANT, SRRPPnT for verifying effectiveness of our approach. As a result, DTecBC detects various behaviors of malicious nodes more effectively than other techniques.

A Locality based Resource Management Scheme for Hierarchical P2P Overlay Network in Ubiquitous Computing (계층적 P2P에서의 근거리 기반 효율적 자원관리 기법)

  • Hong, Chung-Pyo;Kim, Cheong-Ghil;Kim, Shin-Dug
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • Many peer-to-peer (p2p) systems have been studied in distributed, ubiquitous computing environments. Distributed hash table (DHT)-based p2p systems can improve load-balancing even though locality utilization and user mobility are not guaranteed. We propose a mobile locality-based hierarchical p2p overlay network (MLH-Net) to address locality problems without any other services. MLH-Net utilizes mobility features in a mobile environment. MLH-Net is constructed as two layers, an upper layer formed with super-nodes and a lower layer formed with normal-nodes. The simulation results demonstrate that MLH-Net can decrease discovery routing hops by 13% compared with JXTA and 69% compared with Chord. It can decrease the discovery routing distance by 17% compared with JXTA and 83% compared with Chord depending on the environment.

Optimized Binary-Search-on- Range Architecture for IP Address Lookup (IP 주소 검색을 위한 최적화된 영역분할 이진검색 구조)

  • Park, Kyong-Hye;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1103-1111
    • /
    • 2008
  • Internet routers forward an incoming packet to an output port toward its final destination through IP address lookup. Since each incoming packet should be forwarded in wire-speed, it is essential to provide the high-speed search performance. In this paper, IP address lookup algorithms using binary search are studied. Most of the binary search algorithms do not provide a balanced search, and hence the required number of memory access is excessive so that the search performance is poor. On the other hand, binary-search-on-range algorithm provides high-speed search performance, but it requires a large amount of memory. This paper shows an optimized binary-search-on-range structure which reduces the memory requirement by deleting unnecessary entries and an entry field. By this optimization, it is shown that the binary-search-on-range can be performed in a routing table with a similar or lesser number of entries than the number of prefixes. Using real backbone routing data, the optimized structure is compared with the original binary-search-on-range algorithm in terms of search performance. The performance comparison with various binary search algorithms is also provided.

Implementation of Multiple-Valued Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 다치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.115-122
    • /
    • 2004
  • In this paper, the multiple-valued adders and multipliers are implemented by current-mode CMOS. First, we implement the 3-valued T-gate and the 4-valued T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second we implement the circuits to be realized 2-variable 3-valued addition table and multiplication table over finite fields $GF(3^2)$, and 2-variable 4-valued addition table and multiplication table over finite fields $GF(4^2)$ with the multiple-valued T-gates. Finally, these operation circuits are simulated under $1.5\mutextrm{m}$ CMOS standard technology, $15\mutextrm{A}$ unit current, and 3.3V VDD voltage Spice. The simulation results have shown the satisfying current characteristics. The 3-valued adder and multiplier, and the 4-valued adder and multiplier implemented by current-mode CMOS is simple and regular for wire routing and possesses the property of modularity with cell array. Also, since it is expansible for the addition and multiplication of two polynomials in the finite field with very large m, it is suitable for VLSI implementation.

A Study on Countermeasure for CCN Interest Flooding Attack (콘텐츠 중심 네트워킹 환경에서의 Interest Packet Flooding 대응 연구)

  • Kim, DaeYoub
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.954-961
    • /
    • 2013
  • To enhance the efficiency of network, content-centric networking (CCN), one of future Internet architectures, allows network nodes to temporally cache transmitted contents and then to directly respond to request messages which are relevant to previously cached contents. Also, since CCN uses a hierarchical content-name, not a host identity like source/destination IP address, for request/response packet routing and CCN request message does not include requester's information for privacy protection, contents-providers/ network nodes can not identify practical requesters sending request messages. So to send back relevant contents, network nodes in CCN records both a request message and its incoming interfaces on Pending Interest Table (PIT). Then the devices refer PIT to return back a response message. If PIT is exhausted, the device can not normally handle request/response messages anymore. Hence, it is needed to detect/react attack to exhaust PIT. Hence, in this paper, we propose improved detection/reaction schemes against attacks to exhaust PIT. In practice, for fine-grained control, this proposal is applied to each incoming interface. Also, we propose the message framework to control attack traffic and evaluate the performance of our proposal.

A High-speed IP Address Lookup Architecture using Adaptive Multiple Hashing and Prefix Grouping (적응적인 복수 해슁과 프리픽스그룹화를 이용한 고속 IP 주소 검색 구조)

  • Park Hyun-Tae;Moon Byung-In;Kang Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.137-146
    • /
    • 2006
  • IP address lookup has become a major bottleneck of packet forwarding and a critical issue for high-speed networking techniques in routers. In this paper, we propose an efficient high-speed IP address lookup scheme using adaptive multiple hashing and prefix grouping. According to our analysis results based on routing data distributions, we grouped prefix lengths and selected the number of hash functions in each group adaptively. As a result, we can reduce collisions caused by hashing. Accordingly, a forwarding table of our scheme has good memory efficiency, and thus is organized with the proper number of memory modules. Also, the proposed scheme has the fast building and searching mechanisms to develop the forwarding table only during a single memory access.

TP2P: Topology-based Peer-to-Peer System for Efficient Resources Lookup (TP2P: 효율적인 자원탐색을 위한 토폴로지 기반의 P2P 시스템)

  • Cha, Bong-Kwan;Han, Dong-Yun;Son, Young-Song;Kim, Kyong-Sok
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.2
    • /
    • pp.88-99
    • /
    • 2007
  • P2P systems are distributed data sharing systems, and each node in them plays the role of client as well as server. There are several studies using Distributed Hash Table, such as Chord, CAN, Tapestry, Pastry, but these systems don't consider the physical latency, therefore they have a weakness of difficulty to guarantee stable performance. To improve this problem, we present the TP2P system. This system is a self-organizing hierarchical overlay system and it uses Chord routing mechanism for lookup data. This system is organized by several subnets, each subnet is organized by physically close nodes, and global network organized by all nodes. In each subnet, one node finds a data, it saves in a node in the subnet, therefore it has higher probability to reduce physical lookup latency than Chord system. And each node has global information of some nodes in its subnet, and it is used to lookup data, therefore the number of hops decrease about 25% as well as the physical lookup latecy are reduced.

Bit-Map Based Hybrid Fast IP Lookup Technique (비트-맵 기반의 혼합형 고속 IP 검색 기법)

  • Oh Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.244-254
    • /
    • 2006
  • This paper presents an efficient hybrid technique to compact the trie indexing the huge forward table small enough to be stored into cache for speeding up IP lookup. It combines two techniques, an encoding scheme called bit-map and a controlled-prefix expanding scheme to replace slow memory search with few fast-memory accesses and computations. For compaction, the bit-map represents each index and child pointer with one bit respectively. For example, when one node denotes n bits, the bit-map gives a high compression rate by consumes $2^{n-1}$ bits for $2^n$ index and child link pointers branched out of the node. The controlled-prefix expanding scheme determines the number of address bits represented by all root node of each trie's level. At this time, controlled-prefix scheme use a dynamic programming technique to get a smallest trie memory size with given number of trie's level. This paper proposes standard that can choose suitable trie structure depending on memory size of system and the required IP lookup speed presenting optimal memory size and the lookup speed according to trie level number.

  • PDF

Dynamic Single Path Routing Mechanism for Reliability and Energy-Efficiency in a Multi Hop Sensor Network (다중 홉 센서 네트워크에서 신뢰성과 에너지 효율성을 고려한 동적 단일경로 설정기법)

  • Choi, Seong-Yong;Kim, Jin-Su;Jung, Kyung-Yong;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.31-40
    • /
    • 2009
  • What are important in wireless sensor networks are reliable data transmission, energy efficiency of each node, and the maximization of network life through the distribution of load among the nodes. The present study proposed DSPR, a dynamic unique path routing machanism that considered these requirements in wireless sensor networks. In DSPR, data is transmitted through a dynamic unique path, which has the least cost calculated with the number of hops from each node to the sink, and the average remaining energy. At that time, each node monitors its transmission process and if a node detects route damage it changes the route dynamically, referring to the cost table, and by doing so, it enhances the reliability of the network and distributes energy consumption evenly among the nodes. In addition, when the network topology is changed, only the part related to the change is restructured dynamically instead of restructuring the entire network, and the life of the network is extended by inhibiting unnecessary energy consumption in each node as much as possible. In the results of our experiment, the proposed DSPR increased network life by minimizing energy consumption of the nodes and improved the reliability and energy efficiency of the network.