• Title/Summary/Keyword: Routing service

Search Result 558, Processing Time 0.03 seconds

A Decentralized Coordination Algorithm for a Highly Dynamic Vehicle Routing Problem (동적 차량경로 문제에 대한 분산 알고리즘)

  • Okpoti, Evans Sowah;Jeong, In-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.116-125
    • /
    • 2019
  • The Dynamic Vehicle Routing Problem (DVRP) involves a combinatorial optimization problem where new customer demands become known over time, and old routes must be reconfigured to generate new routes while executing the current solution. We consider the high level of dynamism problem. An application of highly dynamic DVRP is the ambulance service where a patient contacts the service center, followed by an evaluation of case severity, and a visit by a practitioner/ ambulance is scheduled accordingly. This paper considers a variant of the DVRP and proposes a decentralized algorithm in which collaborators (Depot and Vehicle), both have only partial information about the entire system. The DVRP is modeled as a periodic re optimization of VRP using the proposed decentralized algorithm where collaborators exchange local information to achieve the best global objective for the current state of the system. We assume the existence of a dispatcher e.g., headquarter of the company who can communicate to vehicles in order to gather information and assigns the new visits to them. The effectiveness of the proposed decentralized coordination algorithm is further evaluated using benchmark data given in literature. The results show that the proposed method performed better than the compared algorithms which utilize the centralized coordination in 12 out of 21 benchmark problems.

A Semi-Soft Handoff Mechanism with Zero Frame Loss in Wireless LAM Networks (무선 LAN 환경에서 프레임 손실 없는 Semi-Soft 핸드오프 방안)

  • 김병호;민상원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12B
    • /
    • pp.1135-1144
    • /
    • 2003
  • In this paper, we proposed a semi-soft handoff mechanism to provide link mobility in IEEE 802.11 wireless LAN environment. Buffers and routing tables in APs and portals are provided in order to reroute frames, which have not been received during handoff time and have been buffered in an old AP, to a new AP after handoff is performed. For the re -routing operation, the MAC routing table should be updated by exchanging information of a mobile terminal between neighbor APs. With our proposed scheme. a wireless LAN node can perform semi soft handoff while changing its attached AP and provide mobile IP and/or real time service like voice over IP. Also, we have done simulation for evaluation of the performance of the proposed scheme. We show that our semi soft handoff mechanism can be applied for real-time service with no frame loss in mobile environment.

Routing Algorithm for the Real-time Traffic Processing in the Internet (인터넷에서 실시간 트래픽 처리를 위한 라우팅 알고리즘)

  • 임철수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.181-181
    • /
    • 2000
  • We identified the performance problems of scheduling algorithms such as FCFS, and demonstrated the superiority of WFQ in terms of realtime performance measures. For this purpose, we presented the service scenario and performed the analysis for the delay bound and fairness which are required to support the realtime applications in the Internet.

  • PDF

A Combined Location and Vehicle Routing Problem (입지선정 및 차량경로문제)

  • 강인선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.263-269
    • /
    • 1996
  • The cost and customer service level of a logistics system depend primarily on the system design of the physical supply system and physical distribution system. The study presents the mathematical model and a huristic solution method of a combined location - vehicle routing problem(LVRP). In LVRP the objective is to determine the number and location of the distribution centers, the allocation of customers to distribution centers, and the vehicle delivery routes, so as to minimize the logistics total cost and satisfy the customer.

  • PDF

A New Mathematical Formulation for Generating a Multicast Routing Tree

  • Kang, Jang-Ha;Kang, Dong-Han;Park, Sung-Soo
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2006
  • To generate a multicast routing tree guaranteeing the quality of service (QoS), we consider the hop constrained Steiner tree problem and propose a new mathematical formulation for it, which contains fewer constraints than a known formulation. An efficient procedure is also proposed to solve the problem. Preliminary tests show that the procedure reduces the computing time significantly.

Routing and Forwarding with Flexible Addressing

  • Poutievski, Leonid B.;Calvert, Kenneth L.;Griffioen, James N.
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.383-393
    • /
    • 2007
  • We present a new network-layer architecture that provides generalized addressing. The forwarding infrastructure is independent of the addressing architecture, so multiple addressing architectures can be used simultaneously. We compare our solution with the existing Internet protocols for unicast and multicast services, given the address assignment used in the Internet. By means of an extensive simulation study, we determine the range of parameters for which the overhead costs(delay, state, and network load) of our service are comparable to those of the Internet.

Vehicle Fleet Planning Problems : The State of the Art and Prospects (배차문제 : 연구현황과 전망)

  • Song Seong-Heon;Park Sun-Dal
    • Journal of the military operations research society of Korea
    • /
    • v.12 no.2
    • /
    • pp.37-55
    • /
    • 1986
  • Vehicle fleet planning problem is generic name given to a whole class of practical decision making problems which find the vehicle routes and schedules to accomplish the reqired service to customers using vehicles. In this paper the various problems are classified into the three groups according to their characteristics: (1) vehicle routing problems, (2) vehicle scheduling problems, and (3) vehicle routing and scheduling problems. The State of the art of each group is described and the future research directions are presented.

  • PDF

Implementation of QoS Provisioning Model in VANET (VANET에서 QoS Provisioning모델의 구현)

  • Huh, Jee-Wan;Song, Wang-Cheol
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.884-888
    • /
    • 2009
  • Vehicular Adhoc Networks (VANET), a Vehicle-to-Infrastucture or Vehicle-to-Vehicle communication technology, is an area that makes more specific use of Mobile Adhoc Networks(MANET). VANET's Quality of Service(QoS) focuses on preventing possible emergencies like car crash from happening by immediately transmitting information to the cars around, while MANET's QoS is being studied for the quality of multimedia data such as Video on Demand(VoD), Video streaming, Voice over IP(VoIP), etc. In this paper, I structure the actual network configuration using Link State Routing(LSR), implement QoS Provisioning Model using Common Open Policy Service(COPS), and suggest more effective k-hop Cluster and inter-domain policy negotiation which fit better to the characteristics of VANET.

  • PDF

A Dynamic Placement Mechanism of Service Function Chaining Based on Software-defined Networking

  • Liu, Yicen;Lu, Yu;Chen, Xingkai;Li, Xi;Qiao, Wenxin;Chen, Liyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4640-4661
    • /
    • 2018
  • To cope with the explosive growth of Internet services, Service Function Chaining (SFC) based on Software-defined Networking (SDN) is an emerging and promising technology that has been suggested to meet this challenge. Determining the placement of Virtual Network Functions (VNFs) and routing paths that optimize the network utilization and resource consumption is a challenging problem, particularly without violating service level agreements (SLAs). This problem is called the optimal SFC placement problem and an Integer Linear Programming (ILP) formulation is provided. A greedy heuristic solution is also provided based on an improved two-step mapping algorithm. The obtained experimental results show that the proposed algorithm can automatically place VNFs at the optimal locations and find the optimal routing paths for each online request. This algorithm can increase the average request acceptance rate by about 17.6% and provide more than 20-fold reduction of the computational complexity compared to the Greedy algorithm. The feasibility of this approach is demonstrated via NetFPGA-10G prototype implementation.

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.