• Title/Summary/Keyword: Routing Tree

Search Result 285, Processing Time 0.023 seconds

An Efficient Algorithm for Dynamic Shortest Path Tree Update in Network Routing

  • Xiao, Bin;Cao, Jiannong;Shao, Zili;Sha, Edwin H.M.
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.499-510
    • /
    • 2007
  • Shortest path tree(SPT) construction is essential in high performance routing in an interior network using link state protocols. When some links have new state values, SPTs may be rebuilt, but the total rebuilding of the SPT in a static way for a large computer network is not only computationally expensive, unnecessary modifications can cause routing table instability. This paper presents a new update algorithm, dynamic shortest path tree(DSPT) that is computationally economical and that maintains the unmodified nodes mostly from an old SPT to a new SPT. The proposed algorithm reduces redundancy using a dynamic update approach where an edge becomes the significant edge when it is extracted from a built edge list Q. The average number of significant edges are identified through probability analysis based on an arbitrary tree structure. An update derived from significant edges is more efficient because the DSPT algorithm neglect most other redundant edges that do not participate in the construction of a new SPT. Our complexity analysis and experimental results show that DSPT is faster than other known methods. It can also be extended to solve the SPT updating problem in a graph with negative weight edges.

A New Mathematical Formulation for Generating a Multicast Routing Tree

  • Kang, Jang-Ha;Kang, Dong-Han;Park, Sung-Soo
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2006
  • To generate a multicast routing tree guaranteeing the quality of service (QoS), we consider the hop constrained Steiner tree problem and propose a new mathematical formulation for it, which contains fewer constraints than a known formulation. An efficient procedure is also proposed to solve the problem. Preliminary tests show that the procedure reduces the computing time significantly.

A Multi-objective Ant Colony Optimization Algorithm for Real Time Intrusion Detection Routing in Sensor Network (센서 네트워크에서 실시간 침입탐지 라우팅을 위한 다목적 개미 군집 최적화 알고리즘)

  • Kang, Seung-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • It is required to transmit data through shorter path between sensor and base node for real time intrusion detection in wireless sensor networks (WSN) with a mobile base node. Because minimum Wiener index spanning tree (MWST) based routing approach guarantees lower average hop count than that of minimum spanning tree (MST) based routing method in WSN, it is known that MWST based routing is appropriate for real time intrusion detection. However, the minimum Wiener index spanning tree problem which aims to find a spanning tree which has the minimum Wiener index from a given weighted graph was proved to be a NP-hard. And owing to its high dependency on certain nodes, minimum Wiener index tree based routing method has a shorter network lifetime than that of minimum spanning tree based routing method. In this paper, we propose a multi-objective ant colony optimization algorithm to tackle these problems, so that it can be used to detect intrusion in real time in wireless sensor networks with a mobile base node. And we compare the results of our proposed method with MST based routing and MWST based routing in respect to average hop count, network energy consumption and network lifetime by simulation.

A Pareto Ant Colony Optimization Algorithm for Application-Specific Routing in Wireless Sensor & Actor Networks (무선 센서 & 액터 네트워크에서 주문형 라우팅을 위한 파레토 개미 집단 최적화 알고리즘)

  • Kang, Seung-Ho;Choi, Myeong-Soo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.346-353
    • /
    • 2011
  • Routing schemes that service applications with various delay times, maintaining the long network life time are required in wireless sensor & actor networks. However, it is known that network lifetime and hop count of trees used in routing methods have the tradeoff between them. In this paper, we propose a Pareto Ant Colony Optimization algorithm to find the Pareto tree set such that it optimizes these both tradeoff objectives. As it enables applications which have different delay times to select appropriate routing trees, not only satisfies the requirements of various multiple applications but also guarantees long network lifetime. We show that the Pareto tree set found by proposed algorithm consists of trees that are closer to the Pareto optimal points in terms of hop count and network lifetime than minimum spanning tree which is a representative routing tree.

Hop-constrained multicast route packing with bandwidth reservation

  • Gang Jang Ha;Park Seong Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.402-408
    • /
    • 2002
  • Multicast technology allows the transmission of data from one source node to a selected group of destination nodes. Multicast routes typically use trees, called multicast routing trees, to minimize resource usage such as cost and bandwidth by sharing links. Moreover, the quality of service (QoS) is satisfied by distributing data along a path haying no more than a given number of arcs between the root node of a session and a terminal node of it in the routing tree. Thus, a multicast routing tree for a session can be represented as a hop constrained Steiner tree. In this paper, we consider the hop-constrained multicast route packing problem with bandwidth reservation. Given a set of multicast sessions, each of which has a hop limit constraint and a required bandwidth, the problem is to determine a set of multicast routing trees in an arc-capacitated network to minimize cost. We propose an integer programming formulation of the problem and an algorithm to solve it. An efficient column generation technique to solve the linear programming relaxation is proposed, and a modified cover inequality is used to strengthen the integer programming formulation.

  • PDF

Performance Evaluation of Tree Routing in Large-Scale Wireless Sensor Networks (대규모 센서네트워크에서의 트리라우팅 성능평가)

  • Beom-Kyu Suh;Ki-Il Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • Tree routing is one of appropriate routing schemes in wireless sensor network because the complexity of this approach is relatively low. But, congestion at a specific node may happen because a parent node toward a sink node is usually selected in one hop way, specially where large number of node are deployed. As feasible solution for this problem, multiple paths and sinks schemes can be applied. However, the performance of these schemes are not proved and analyzed yet. In this paper, we conduct diverse simulaton scenarios performance evaluation for these cases to identify the improvement and analyze the impact of schemes. The performance is measured in the aspects of packet transmission rate, throughput, and end-to-end delay as a function of amount of network traffic.

Dynamic Caching Routing Strategy for LEO Satellite Nodes Based on Gradient Boosting Regression Tree

  • Yang Yang;Shengbo Hu;Guiju Lu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.131-147
    • /
    • 2024
  • A routing strategy based on traffic prediction and dynamic cache allocation for satellite nodes is proposed to address the issues of high propagation delay and overall delay of inter-satellite and satellite-to-ground links in low Earth orbit (LEO) satellite systems. The spatial and temporal correlations of satellite network traffic were analyzed, and the relevant traffic through the target satellite was extracted as raw input for traffic prediction. An improved gradient boosting regression tree algorithm was used for traffic prediction. Based on the traffic prediction results, a dynamic cache allocation routing strategy is proposed. The satellite nodes periodically monitor the traffic load on inter-satellite links (ISLs) and dynamically allocate cache resources for each ISL with neighboring nodes. Simulation results demonstrate that the proposed routing strategy effectively reduces packet loss rate and average end-to-end delay and improves the distribution of services across the entire network.

Efficient Flooding Methods for Link-state Routing Protocols (Link-state 라우팅 프로토콜을 위한 효율적인 플러딩 방법)

  • Kim, Jeong-Ho;Lee, Seung-Hwan;Rhee, Seung-Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.760-766
    • /
    • 2012
  • In this paper, we propose an efficient flooding process on link-state routing protocol. It is possible to exchange information using typical link-state routing protocol; for example, OSPF(Open Short Path First) or IS-IS(Intermediate system routing protocol) that floods LSA between nodes when the network topology change occurs. However, while the scale of network is getting bigger, it affects the network extensibility because of the unnecessary LSA that causes the increasing utilization of CPU, memory and bandwidth. An existing algorithm based on the Minimum spanning tree has both network instability and inefficient flooding problem. So, we propose algorithm for efficient flooding while maintaining network stability. The simulation results show that the flooding of proposed algorithm is more efficient than existing algorithm.

Energy-aware Tree Routing Protocol for Wireless Sensor Networks (센서 네트워크에서 에너지 효율성을 고려한 트리 라우팅 프로토콜)

  • Hwang, So-Young;Jin, Gwang-Ja;Shin, Chang-Sub;Kim, Bong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.624-629
    • /
    • 2008
  • Many routing protocols have been proposed for sensor networks where energy awareness and reliability are essential design issues. This paper proposes an Energy-aware Tree Routing Protocol (ETRP) for Wireless Sensor Networks. The proposed scheme relates to reliable and energy efficient data routing by selecting a data transmission path in consideration of residual energy at each node to disperse energy consumption across the networks and reliably transmit the data through a detour path when there is link or node failure. Simulation results show that the proposed method outperformed traditional Tree Routing (TR) by 23.5% in network lifetime.

TRE+: Extended Tree-Based Routing Ethernet

  • Carral, Juan A.;Ibanez, Guillermo;Garcia-Martinez, Alberto;Lopez-Carmona, Miguel A.;Marsa-Maestre, Ivan
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.157-159
    • /
    • 2010
  • Tree-based routing Ethernet (TRE) is a recent Ethernet architecture that enables shortcut links to improve performance compared to spanning tree protocols. However, TRE can only use shortcuts that arrive directly at bridges located in the branch of the destination. TRE+ extends the topology knowledge of a bridge to 2 hops away, thus unveiling new shortcuts to the destination branch. Simulations show a major performance improvement of TRE+ compared to TRE, with results close to shortest paths in some topologies.