• Title/Summary/Keyword: Route(network) lifetime

Search Result 63, Processing Time 0.021 seconds

Energy-Aware Routing Algorithm using Backup Route for Ad hoc Network (애드혹 네트워크에서의 보조 경로를 이용한 에너지 인식 라우팅 알고리즘)

  • Jung Se-Won;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-32
    • /
    • 2005
  • This paper proposes a new algorithm for the energy constraint ad-hoc network which efficiently spread the energy usage over the network through the backup route scheme in order to increase the network lifetime. Recently, the various energy-efficient routing algorithms based on On-demanding method are proposed. Among them, PSR(Power-aware Source Routing) increased the network lifetime through the periodical route alternation depended on the use of the battery while DSR(Dynamice Source Routing) uses only the route selected during the route discovery phase. But PSR has a problem that it increases the route overhead because of the frequent flooding for the route alternation. For solving this problem, we propose HPSR(Hierarchical Power-aware Source Routing) which uses the backup route set during the route discovery in order to alternation the route without the flooding. HPSR increases the network lifetime due to the frequent route alternation using backup route while it decreases the routing overhead due to the reduced flooding. In this paper, we also prove the performance of HPSR through the simulation using OPNET.

An Architecture to Support Power Saving Transmission Services with Route Stability in Mobile Ad-hoc Wireless Networks

  • An, Beong-Ku;Kim, Nam-Soo
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In mobile ad-hoc wireless networks, one of the most important challenging issues is how to conserve energy, maximizing the lifetime of route(networks) in the view points of both power and mobility of nodes. However, many transmission methods presented in the previous works can not satisfy these two objectives simultaneously. To obtain these two goals, in this paper we propose an architecture to support power saving transmission services with route stability in mobile ad-hoc wireless networks. The proposed architecture consists of two parts, the underlying route stability method to support route(network) lifetime and the power saving transmission methods. The performance evaluation of the proposed architecture is achieved via simulation and analysis.

  • PDF

An Entropy-Based Routing Protocol for Supporting Stable Route Life-Time in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 안정된 경로의 Life-Time을 지원하기 위한 엔트로피 기반의 라우팅 프로토콜)

  • An, Beong Ku;Lee, Joo Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, we propose an entropy-based routing protocol to effectively support both stable route construction and route lifetime in Mobile Ad-hoc Wireless Sensor Networks (MAWSN). The basic idea and feature of the proposed routing protocol are as follows. First, we construct the stable routing routes based on entropy concept using mobility of mobile nodes. Second, we consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation using OPNET(Optimized Network Engineering Tool) and analysis. The results of the performance evaluation show that the proposed routing protocol can efficiently support both the construction of stable route and route lifetime in mobile ad-hoc wireless networks.

  • PDF

A Location-Aided Cooperative Transmission Method in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 위치도움 협력 전송 방법)

  • Son, Dong-Hwan;Lee, Joo-Sang;An, Beongku;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper, we propose location-aided cooperative routing protocol (LACARP) for supporting power saving and stable route lifetime in mobile ad-hoc wireless sensor networks. The main ideas and features of the proposed routing protocol are as follows. First, the definition of the area of route search using location-based information to support power saving transmission. Second, the expect zone-based establishment of routing route within the area of route search. Third, the cooperative-aided transmission method. In the operation of data transmission over the established rout the datas are transmitted via both the established route and cooperative route aided by neighbor nodes. The performance evaluation using OPNET(Optimized Network Engineering Tool) shows the LACARP can improve the packet delivery ratio and power saving transmission efficiently.

  • PDF

A Fuzzy Routing Protocol for Wireless Sensor Network (무선 센서 네트워크를 위한 퍼지 라우팅 프로토콜)

  • Lee, Byong-Kwon;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.611-620
    • /
    • 2007
  • Distributing the routing path over the entire network is an important factor to maintain the lifetime of wireless sensor network as long as possible. This paper proposes a fuzzy routing protocol that decides a routing path based on the fuzzy control rules. The fuzzy controller receives the energy values, distances, and hop counts of possible route paths as input, and the inference engine produces the contribution factors for each of route paths. The route path with the largest contribution factor is elected as the final routing path. The nodes contained in the routing path reduce their energy after transmitting a data packet so as to prevent the same route path from being selected repeatedly. It makes the network traffic spreaded over the network resulting longer network lifetime. The computer simulations on TinyOS have shown that the fuzzy routing protocol is more energy efficient and has longer network lifetime compared to the existing routing protocols.

Energy-aware Routing Protocol using Multi-route Information in Wireless Ad-hoc Networks with Low Mobility (저이동성을 갖는 무선 애드혹 망에서 다중 경로 정보를 이용한 에너지 인지 라우팅 프로토콜)

  • Hong, Youn-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.55-65
    • /
    • 2010
  • We present a method for increasing network lifetime without link failure due to lack of battery capacity of nodes in wireless ad-hoc networks with low mobility. In general, a node with larger remaining battery capacity represents the one with lesser traffic load. Thus, a modified AODV routing protocol is proposed to determine a possible route by considering a remaining battery capacity of a node. Besides, the total energy consumption of all nodes increase rapidly due to the huge amount of control packets which should be flooded into the network. To reduce such control packets efficiently, a source node can store information about alternative routes to the destination node into its routing table. When a link failure happens, the source node should retrieve the route first with the largest amount of the total remaining battery capacity from its table entries before initiating the route rediscovery process. To do so, the possibility of generating unnecessary AODV control packets should be reduced. The method proposed in this paper increases the network lifetime by 40% at most compared with the legacy AODV and MMBCR.

The Route Re-acquisition Algorithm for Ad Hoc Networks (애드혹 네트워크의 경로 재설정 라우팅 기법)

  • Shin, Il-Hee;Choi, Jin-Chul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.25-37
    • /
    • 2007
  • The existing route re-establishment methods which intend to extend the lifetime of the network attempt to find new routes in order not to overly consume energy of certain nodes. These methods outperform other routing algorithms in the network lifetime extension aspect because they try to consume energy evenly for the entire network. However, these algorithms involve heavy signaling overheads because they find new routes based on the flooding method and route re-acquisition occurs often. Because of the overhead they often can not achieve the level of performance they intend to. In this paper, we propose a new route re-acquisition algorithm ARROW which takes into account the cost involved in the packet transmission and the route re-acquisition. Since the proposed algorithm considers future route re-acquisition costs when it first finds the route, it spends less energy to transmit given amount of data while evenly consuming the energy as much as possible. Using 2-dimensional Markov Chain model, we compare the performance of the proposed algorithm and that of other algorithms. Analysis results show that the proposed algorithm outperforms the existing route re-acquisition methods in the signaling overhead and network lifetime aspects.

An Adaptive Routing Protocol with a Balanced Energy Consumption For Wireless Ad-hoc Networks (애드혹 네트워크에서 에너지 소비 균형을 고려한 적응형 라우팅 프로토콜)

  • Kim, Yong-Hyun;Hong, Youn-Sik
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.303-310
    • /
    • 2008
  • To increase the lifetime of ad-hoc networks, a ratio of energy consumption for each node should be kept constant by equally distributing network traffic loads into all of the nodes. In this paper, we propose a modified AODV routing protocol to determine a possible route by considering a remaining battery capacity of a node and the degree of its usage. In addition, to reduce the amount of energy consumption during the path rediscovery process due to the huge amount of the AODV control messages the limited number of possible routes are stored into a routing table of a source node. When some links of a route fail, another possible path can be looked up in the table before the route discovery process should be initiated. We have tested our proposed method with a conventional AODV and a MMBCR method which is one of the power-efficient energy routing protocols based on the three performance metrics, i.e., the total remaining battery capacity, network lifetime and the ratio of data packets received by the destination node to compare their performance.

Novel Two-Level Randomized Sector-based Routing to Maintain Source Location Privacy in WSN for IoT

  • Jainulabudeen, A.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.285-291
    • /
    • 2022
  • WSN is the major component for information transfer in IoT environments. Source Location Privacy (SLP) has attracted attention in WSN environments. Effective SLP can avoid adversaries to backtrack and capture source nodes. This work presents a Two-Level Randomized Sector-based Routing (TLRSR) model to ensure SLP in wireless environments. Sector creation is the initial process, where the nodes in the network are grouped into defined sectors. The first level routing process identifies sector-based route to the destination node, which is performed by Ant Colony Optimization (ACO). The second level performs route extraction, which identifies the actual nodes for transmission. The route extraction is randomized and is performed using Simulated Annealing. This process is distributed between the nodes, hence ensures even charge depletion across the network. Randomized node selection process ensures SLP and also avoids depletion of certain specific nodes, resulting in increased network lifetime. Experiments and comparisons indicate faster route detection and optimal paths by the TLRSR model.

Broadcast Redundancy Reduction Algorithm for Enhanced Wireless Sensor Network Lifetime (무선 센서 네트워크의 수명 향상을 위한 브로드캐스트 중복 제거 알고리즘)

  • Park, Cheol-Min;Kim, Young-Chan
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.71-79
    • /
    • 2007
  • The communicative behaviors in Wireless Sensor Networks(WSNs) can be characterized by two different types: routing and broadcasting. The broadcasting is used for effective route discoveries and packet delivery. However, broadcasting shorten the network lifetime due to the energy overconsumption by redundant transmissions. In this paper, we proposed a algorithm that remove redundant forward nodes based on Dominant Pruning method using 2-hop neighbors knowledge. Simulation results show that the proposed algorithm appears superior performance in respect of the number of forward nodes and the network lifetime.

  • PDF