• 제목/요약/키워드: Roughness control

검색결과 537건 처리시간 0.027초

유압제어시스템 적용을 위한 ER 밸브의 내구성 평가 (Durability Evaluation of ER Fluids in Hydraulic Control Systems)

  • 김도태;장성철
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.100-105
    • /
    • 2007
  • Electro-rheological(ER) fluid and valve are fabricated and evaluated experimentally in its durability to utilize the hydraulic control systems for long term operation. The two-ports ER valve used in the experiment consist of twelve parallel multi-layer electrodes and provide a restriction to the passage of ER fluid because of the viscous pressure drop and a component induced by the electric field. The durability test of ER valve are performed by measuring the surface roughness of electrodes with variation of an electric field strength and test time(1000 or 1800min.). Also, the shear stress and shear rate are measured to evaluate the durability of ER fluid as function of time. After durability test, ER shear stress increases approximately proportional to the shear rate with applied electric field intensity, In the ER valve, the center line average height roughness(Ra) of copper electrode increases about 1.56 times and ten-point median height roughness(Rz) increases about 2.2 times after the durability test. An understanding of these durability is essential to predicting the service life of ER fluid and valves.

공구경로 및 자세의 선정과 이송률 제어를 통한 임펠러 표면조도 개선에 관한 연구 (A Study on the Improvement of Surface Roughness of Impeller by Selection of Tool Path and Posture and Control of Feedrate)

  • 황종대;오지영;정윤교
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1088-1095
    • /
    • 2008
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of tool path, tool posture, feedrate control at a tool tip and post-processing. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various tool paths, tool postures, and feedrate types. Machining experiment on AL7075 for impeller is performed to define suitable machining condition, and measurement of surface roughness on machined surfaces depended on each machining condition is performed. By defining suitable machining condition, we should have conclusion as improving the surface quality in the aspect of surface roughness and machined shape of surface.

글레이즈 컬러를 적용한 의치상 레진의 비커스 경도 평가 (Evaluation of the Vickers hardness on denture acrylic resins by glaze color)

  • 임용운
    • 대한치과기공학회지
    • /
    • 제44권4호
    • /
    • pp.111-117
    • /
    • 2022
  • Purpose: This study was conducted to compare the Vickers hardness on the denture acrylic resins using the glaze color system. Methods: The specimens (20×2 mm) were prepared by mixing according to the manufacturer's protocols through thermal polymerization and self-polymerization. The surface roughness was measured using a testing machine after water-soaking for 48 hours. For the Vickers hardness measurement, the completed specimen was soaked in water for 48 hours and then applied at 200 gf for 30 seconds. Was the specimen immersed after being soaked in water for 48 hours at temperatures of 5℃ and 55℃, respectively, for 30 seconds for the thermos-cycling treatment, and it was carried out 5,000 times. Results: Surface roughness was higher in the more glazing group than in the control group. A significant difference was observed in all groups, except for the Retec Don 2000 and Luciton 199 groups (p<0.05). As a result of measuring the Vickers hardness, the treatment by glaze color showed slightly lower but the thermo-cycling treatment group appeared higher than control group in all. Conclusion: Therefore, the glaze color was found to affect the surface roughness and showed a significant difference. The surface glaze color showed a very high Vickers hardness after the thermo-cycling treatment, indicating that the surface-strengthening effect is greater in the oral environment.

ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성 (Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device)

  • 이봉근;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF

AZO 박막의 표면 거칠기에 따른 OLED 소자의 특성 (Effect of surface roughness of AZO thin films on the characteristics of OLED device)

  • 이봉근;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.25-29
    • /
    • 2010
  • We have investigated the effect of surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of AZO thin films, we have processed photo-lithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the AZO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the AZO thin films. Device structure was AZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer. The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

  • Kim, In-Ju
    • Safety and Health at Work
    • /
    • 제9권1호
    • /
    • pp.17-24
    • /
    • 2018
  • Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents.

Effect of different grinding burs on the physical properties of zirconia

  • Lee, Kyung-Rok;Choe, Han-Cheol;Heo, Yu-Ri;Lee, Jang-Jae;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권2호
    • /
    • pp.137-143
    • /
    • 2016
  • PURPOSE. Grinding with less stress on 3Y-TZP through proper selection of methods and instruments can lead to a long-term success of prosthesis. The purpose of this study was to compare the phase transformation and physical properties after zirconia surface grinding with 3 different grinding burs. MATERIALS AND METHODS. Forty disc-shaped zirconia specimens were fabricated. Each Ten specimens were ground with AllCeramic SuperMax (NTI, Kahla, Germany), Dura-Green DIA (Shofu Inc., Kyoto, Japan), and Dura-Green (Shofu Inc., Kyoto, Japan). Ten specimens were not ground and used as a control group. After the specimen grinding, XRD analysis, surface roughness test, FE-SEM imaging, and biaxial flexural strength test were performed. RESULTS. After surface grinding, small amount of monoclinic phase in all experimental groups was observed. The phase change was higher in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs. The roughness of surfaces increased in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs than control groups and ground with Dura-Green. All experimental groups showed lower flexural strength than control group, but there was no statistically significant difference between control group and ground with Dura-Green DIA and AllCeramic SuperMax burs. The specimens, which were ground with Dura-Green showed the lowest strength. CONCLUSION. The use of dedicated zirconia-specific grinding burs such as Dura-Green DIA and AllCeramic SuperMax burs decreases the grinding time and did not significantly affect the flexural strength of zirconia, and therefore, they may be recommended. However, a fine polishing process should be accompanied to reduce the surface roughness after grinding.

제어밸브 유량특성에 레이놀즈 수가 미치는 영향 (Effect of Reynolds Number on the Flow Characteristics of a Control Valve)

  • 정태규
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.995-999
    • /
    • 2017
  • 제어밸브의 유량계수에 영향을 미치는 인자들을 파악하고 그 영향을 분석하였다. 제어밸브의 유량계수는 레이놀즈 수, 연결 배관의 형상과 표면 조도 등에 영향을 받는다. 따라서 유량계수를 상수로 취급할 수 없다. 그러므로 로켓엔진과 같이 정확한 유량계수를 요구하는 시스템에서 사용할 목적으로 제어밸브의 유량계수를 측정할 때는 실제 사용 환경과 유사한 레이놀즈 수 영역에서, 동일한 조도 및 형상을 가지는 입출구 배관을 사용하여 측정해야 한다.

  • PDF

표면 처리 방법에 따른 타이타늄의 미세 표면 거칠기, 표면 젖음성, fibronectin 흡착량에 미치는 영향 (EFFECTS OF VARIOUS SURFACE TREATMENTS FOR TITANIUM ON SURFACE MICRO ROUGHNESS, STATIC WETTABILITY, FIBRONECTIN ADSORPTION)

  • 신화섭;김영수;신상완
    • 대한치과보철학회지
    • /
    • 제44권4호
    • /
    • pp.443-454
    • /
    • 2006
  • Purpose: This study aims to get the fundamental data which is necessary to the development direction of implant surface treatment hereafter, based on the understanding the surface structure and properties of titanium which is suitable for the absorption of initial tissue fluid by researching effects of additional surface treatments fir sandblasted with large git and acid-etched(SLA) titanium on surface micro-roughness, static wettability, fibronectin adsorption Materials and Method: In the Control groups, the commercial pure titanium disks which is 10mm in diameter and 2mm in thickness were treated with HCI after sandblasting with 50$\mu$m $Al_2O_3$. The experiment groups were made an experiment each by being treated with 1) 22.5% nitric acid according to SLA+ASTM F86 protocol, 2) SLA+30% peroxide, 3) SLA+NaOH, 4) SLA+ Oxalic acid, and 5) SLA+600$^{\circ}C$ heating. In each group, the value of Ra and RMS which are the gauges of surface roughness was measured, surface wettability was measured by analyzing with Sessile drop method, and fibronectin adsorption was measured with immunological assay. The significance of each group was verified by (SPSS, ver.10.0 SPSS Inc.) Kruskal-Wallis Test. (α=0.05) And the correlation significance between Surface micro-roughness and surface wettability. surface roughness and fibronectin adsorption, and surface wettability and fibronectin adsorption was tested by Spearman's correlation analysis. Result: All measure groups showed the significant differences in surface micro-roughness, surface wettability, and fibronectin adsorption. (p<0.05) There was no significance in correlation among the surface micro-roughness, surface wettability, and fibronectin adsorption. (p>0.05) Conclusion: Surface micro-roughness and surface wettability rarely affected the absorption of initial tissue fluid on the surface of titanium.

다구찌 실험 계획법을 활용한 평삭 가공에서의 표면 거칠기에 대한 절삭조건 영향 분석 (Effects of Cutting Parameters on Surface Roughness in Planing Using Taguchi Method)

  • 서동현;권예필;김영재;최환진;전은채
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.93-98
    • /
    • 2021
  • The complex effects of the machining parameters make it is difficult to control and predict surface roughness. The theoretical surface roughness observed during mechanical machining with a round tool is determined by the tool radius and pitch. However, it was revealed that other parameters, such as the depth of cut and cutting speed, also affect surface roughness. This study adapted the Taguchi method, which can analyze the effects of cutting parameters quantitatively with an efficient number of experiments, to optimize the parameters for better surface roughness. Experiments were designed based on an orthogonal array, and the quantitative effects on the surface roughness were analyzed using the S/N ratio. The surface roughness was affected by all parameters, especially the tool radius. The optimum cutting parameter values obtained in this study showed better surface roughness than the other combinations of the parameters.