• Title/Summary/Keyword: Roughness control

Search Result 537, Processing Time 0.029 seconds

Developement of 3-D Vision Monitoring System for Tailored Blank Welding (맞춤판재 용접용 3차원 비젼 감시기 개발)

  • Jang, Young-Gun;Lee, Keung-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.17-23
    • /
    • 1997
  • A 3-D vision system is developed to evaluate blanks' line up and monitor gap and thickness difference between blanks in tailored blank welding system. A structured lighting method is used for 3-D vision recognition. Images of sheared portion in blanks are irregular according to roughness of blank surface, shape of sheared geometry and blurring. It is difficult to get accurate and reliable informations in the case of using binary image processing or contour detection techniques in real time for such images. We propoe a new energy integration method robust to blurring and changes of illumination. The method is computationally simple, and uses feature restoration concept, different to another digital image restoration methods which aim image itself restoration and may be used in conventional applications using structured line lighting technique. Experimental results show this system measuring repeatability is .+-. pixel for gap and thickness difference in static and dynamic tests. The data are expected to be useful for preview gap control.

  • PDF

Efficiency enhancement of the organic light-emitting diodes by oxygen plasma treatment of the ITO substrate

  • Hong, J.W.;Oh, D.H.;Kim, C.H.;Kim, G.Y.;Kim, T.W.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.193-197
    • /
    • 2012
  • Oxygen plasma has been treated on the surface of indium-tin-oxide (ITO) to improve the efficiency of the organic light-emitting diodes (OLEDs) device. The plasma treatment was expected to inject the holes effectively due to the control of an ITO work-function and the reduction of surface roughness. To optimize the treatment condition, a surface resistance and morphology of the ITO surface were investigated. The effect on the electrical properties of the OLEDs was evaluated as a function of oxygen plasma powers (0, 200, 250, 300, and 450 W). The electrical properties of the devices were measured in a device structure of ITO/TPD/Alq3/BCP/LiF/Al. It was found the plasma treatment of the ITO surface affects on the efficiency of the device. The efficiency of the device was optimized at the plasma power of 250 W and decreased at higher power than 250 W. The maximum values of luminance, luminous power efficiency, and external quantum efficiency of the plasma treated devices increase by 1.4 times, 1.4 times, and 1.2 times, respectively, compared to those of the non-treated ones.

Fabrication of Reverse Osmosis Membrane with Enhanced Boron Rejection Using Surface Modification (표면개질을 이용하여 붕소 제거율이 향상된 역삼투막의 제조)

  • Lee, Deok-Ro;Kim, Jong Hak;Kwon, Sei;Lee, Hye-Jin;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2018
  • With the rapid increase in seawater desalination, the importance of boron rejection is rising. This study was conducted to investigate the effect of hydrophilic compounds on surface modification to maximize water flux and increase boron rejection. First, polyamide active layer was fabricated by interfacial polymerization of polysulfone ultrafiltration membrane with M-phenylenediamine (MPD) and trimesoyl chloride (TMC) to obtain Control polyamide membrane. Next, D-gluconic acid (DGCA) and D-gluconic acid sodium salt (DGCA-Na) were synthesized with glutaraldehyde (GA) and hydrochloric acid (HCl) by modifying the surface of Control polyamide membrane. XPS analysis was carried out for the surface analysis of the synthesized membrane, and it was confirmed that the reaction of surface with DGCA and DGCA-Na compounds was performed. Also, FE-SEM and AFM analysis were performed for morphology measurement, and polyamide active layer formation and surface roughness were confirmed. In the case of water flux, the membrane fabricated by the surface modification had a value of 10 GFD or less. However, the boron rejection of the membranes synthesized with DGCA and DGCA-Na compounds were 94.38% and 94.64%, respectively, which were 12.03 %p and 12.29 %p larger than the Control polyamide membrane, respectively.

A Study on Control of Sealing Robot for Cracks of Concrete Surface (콘크리트 표면 균열 실링을 위한 로봇의 제어 방법에 관한 연구)

  • Cho, Cheol-Joo;Lim, Kye-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.481-491
    • /
    • 2015
  • Since the crack in the surface of the concrete acts as the main reason influencing the life span of the structure, regular inspections and maintenance are required. The sealing required for maintenance of the concrete surface is a method of repairing the crack in the surface in the beginning, and is effective in preventing additional cracks and expansion that occurs with time. However, sealing on large sized structures such as tall buildings or bottom parts of bridges are difficult to ensure safety of the workers due to inadequate working environments. Due to this reason, the importance of the need for sealing automation for the maintenance of large sized concrete structures is emerging. This study proposes two control methods to apply robot systems to the sealing of cracks on the bottom parts of concrete bridges. First is the method of automatically tracking the trajectory of cracks. The robot gets the trajectory of the cracks using video information obtained from cameras. Comparing the previous several points and new point, the next point can be estimated. Thus, the trajectory of the crack can be tracked automatically. The other method is sealing by maintaining steady force to the contacting surface. The concrete surface exposed to an external environment for a long time gets an irregular roughness. If robots are able to carry out sealing while maintaining a steady contact force on these rough surfaces, complete equal sealing can be maintained. In order to maintain this equal force, a force control method using impedance is proposed. This paper introduces two developed control methods to apply to sealing robots, and conducts a Lab Test and Field Test after applying to a robot. Based on the test results, opinions on the possibilities of field application of the robot applied with the control methods are presented.

Evaluations of Magnetic Abrasive Polishing and Distribution of Magnetic Flux Density on the Curvature of Non-Ferrous Material (곡면 자기연마에서의 자기력 형성과 가공특성에 관한 연구)

  • Kim, Sang-Oh;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Automatic magnetic abrasive polishing (MAP), which can be applied after machining of a mold on a machine tool without unloading, is very effective for finishing a free-form surface such as a complicated injection mold. This study aimed to improve the efficiency of MAP of a non-ferrous mold surface. The magnetic array table and control of the electromagnet polarity were applied in the MAP of a free-form surface. In this study, first, the magnetic flux density on the mold surface was simulated to determine the optimal conditions for the polarity array. Then, the MAP efficiency for polishing a non-ferrous mold surface was estimated in terms of the change in the radius of curvature and the magnetic flux density. The most improved surface roughness was observed not only in the upward tool path but also in the working area of larger magnetic flux density.

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

Experimental Study of Thrust Vectoring of Supersonic Jet Utilizing Co-flowing Coanda Effects (동축류의 코안다 효과를 이용한 초음속 제트의 추력편향제어에 관한 실험적 연구)

  • Yoon, Sang-Hun;Jun, Dong-Hyun;Heo, Jun-Young;Sung, Hong-Gye;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2012
  • The characteristics of two-dimensional supersonic coanda flow was experimentally investigated. For various ratios of slot height to coanda wall's radius of curvature, surface roughnesses, and jet stagnation pressures, the characteristics of the supersonic coanda flow such as shock structures and hysteresis were observed by flow visualization. It was found that the characteristics of hysteresis of the coanda jet was related to the surface roughness of the coanda wall. The study was further extended for application of the tangentially injected coanda jet to control co-flowing highly compressible main jet direction. It was noticed that the stagnation pressure of the main jet as well as the ratio of the slot height to coanda wall's radius of curvature wall was an influencing factor in the performance of the fluidic thrust vectoring method.

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF

Study on the Remote Controllability of Vision Based Unmanned Vehicle Using Virtual Unmanned Vehicle Driving Simulator (가상 무인 차량 시뮬레이터를 이용한 영상 기반 무인 차량의 원격 조종성 연구)

  • Kim, Sunwoo;Han, Jong-Boo;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.525-530
    • /
    • 2016
  • In this paper, we proposed an image shaking index to evaluate the remote controllability of vision based unmanned vehicles. To analyze the usefulness of the proposed image-shaking index, we perform subjective tests using a virtual unmanned vehicle driving simulator. The developed driving simulator consists of a real-time multibody dynamic software of the unmanned vehicle, a motion simulator, and a driver console. We perform dynamic simulations to obtain the motion of the unmanned vehicle running on the various road surfaces such as ISO roughness level A~E roads. The motion of the vehicle body is reflected in the motion simulator. Then, to enable remote control operation, we offer to operators the image data that was measured using the camera sensor on the simulator. We verify the usefulness of the proposed image-shaking index compared with subjective index provided by operators.