• Title/Summary/Keyword: Roughness Position

Search Result 96, Processing Time 0.029 seconds

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Improvement of STS316L Milling Characteristics According to Coolant Spray Position (절삭유 분사위치에 따른 STS316L의 밀링가공 특성 개선)

  • Kim, Su Hwan;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.427-433
    • /
    • 2017
  • In the case of high-strength or low thermal conductivity material milling, tool breakage occurs easily because of the high friction temperature. Therefore, the effectiveness of the coolant supply is very important for proper tool cooling. As the manually adjustable joint mechanism nozzle is generally used for coolant supply, the cooling efficiency is very low. It also has a bad influence on the workspace environment because of coolant scattering. In this study, the milling characteristics of STS316L were investigated according to the coolant spray position based on the automatic adjustable system. Tool wear and surface roughness were measured according to the coolant spray position. Through these experiments, the effectiveness of the fabricated system was explained.

Acoustical analysis of knee sound for diagnosis of articular pathology (관절질환 진단을 위한 슬관절음의 음향학적 분석)

  • Kim, K.S.;Lee, S.O.;Jin, S.C.;Moon, C.H.;Jang, Y.S.;Han, M.S.;Um, E.C.;Kweon, J.B.;Cho, D.H.;Jung, M.S.;Song, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.51-53
    • /
    • 2005
  • Considerable noise is sometimes associated with degeneration of the hee joint surface. Such noise may indicate roughness or softening of the cartilage surfaces, and may be a useful index for early disease. In this study, we have evaluated arthritic pathology using the acoustical analysis of knee joint sounds. During sitting and standing periods, subjects' active knee flexion and extension were monitored. Fundamental frequency, mean amplitude of pitch, jitter and shimmer were analyzed according to the position and the joint angle. The result showed that the fundamental frequency of the 2nd patient group and standing position was higher than the others, and that the pitch of sounds changed unstably. These results suggest that an analysis of knee joint sound might assist non-invasive diagnosis of an articular pathology.

  • PDF

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System (Remote 플라즈마에서 위치 및 반응기체에 따른 PMMA의 식각 특성 분석)

  • Ko, Cheonkwang;Lee, Wongyu
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.483-488
    • /
    • 2006
  • Etching process of PMMA (Polymethyl Methacrylate) on glass surface was investigated by dry etching technique using remote plasma. To determine the etching characteristics, the remote plasma etching was conducted for various process parameters such as plasma power, reaction gas and distance from plasma generation. As the distance from the plasma generation was increased, the etch rate of PMMA was linearly decreased by radical density in plasma. PMMA has removed by reactive radicals in the plasma. The etch rate increased with plasma power because of more reactive radicals. The etch rate and surface roughness of PMMA increased with $O_2$ concentration in the etchant.

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

The Optimization of Laser Welding Process for Electrical Steel Coil Joining Using the Taguchi Method (다구찌 방법을 이용하는 전기강판 코일 연결용 레이저 용접 공정의 최적화)

  • Shin, Joong-Han;Kim, Do-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.63-70
    • /
    • 2022
  • Laser welding has attracted great attention as a tool used to join electrical steel coils. In this study, laser butt welding for electrical steel coil joining was conducted using the Taguchi method. It was found that structural defects such as void sand cracks were not produced in welds. This indicated that the performance of laser welding in electrical steel was excellent. According to the Taguchi analysis, the total welding quality index (TWQI) considering the bead height and roughness and tensile strength of the weld joint was almost evenly affected by laser power, welding speed, and focal position. The optimum welding conditions to maximize the TWQI were a laser power of 1220W, welding speed of 90 mm/s, and a focal position of 1mm. The regress model predicting the TWQI was also developed using the surface response method. We found that the model predicts measured values with an average error of 16.36%.

A Study on Pressure Distribution for Uniform Polishing of Sapphire Substrate

  • Park, Chul jin;Jeong, Haedo;Lee, Sangjik;Kim, Doyeon;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • Total thickness variation (TTV), BOW, and surface roughness are essential characteristics for high quality sapphire substrates. Many researchers have attempted to increase removal rate by controlling the key process parameters like pressure and velocity owing to the high cost of consumables in sapphire chemical mechanical polishing (CMP). In case of the pressure approach, increased pressure owing to higher deviation of pressure over the wafer leads to significant degradation of the TTV. In this study, the authors focused on reducing TTV under the high-pressure conditions. When the production equipment polishes multiple wafers attached on a carrier, higher loads seem to be concentrated around the leading edge of the head; this occurs because of frictional force generated by the combination of table rotation and the height of the gimbal of the polishing head. We believe the skewed pressure distribution during polishing to be the main reason of within-wafer non-uniformity (WIWNU). The insertion of a hub ring between the polishing head and substrate carrier helped reduce the pressure deviation. Adjusting the location of the hub ring enables tuning of the pressure distribution. The results indicated that the position of the hub ring strongly affected the removal profile, which confirmed that the position of the hub ring changes the pressure distribution. Furthermore, we analyzed the deformation of the head via finite element method (FEM) to verify the pressure non-uniformity over the contact area Based on experiment and FEM results, we determined the optimal position of hub ring for achieving uniform polishing of the substrate.

Effect of Double Noise-Barrier on Air Pollution Dispersion around Road, Using CFD

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Noise-barriers on both sides of the roadway (hereafter referred to as double noise-barriers), are a common feature along roads in Korea, and these are expected to have important effects on the near-road air pollution dispersion of vehicle emissions. This study evaluated the double noise-barrier impact on near-road air pollution dispersion, using a FLUENT computational fluid dynamics (CFD) model. The realizable k-${\varepsilon}$ model in FLUENT CFD code was used to simulate vehicle air pollutant dispersion, in around 11 cases of double noise-barriers. The simulated concentration profiles and surface concentrations under no barrier cases were compared with the experimental results. The results of the simulated flows show the following three regimes in this study: isolated roughness (H/W=0.05), wake interface (H/W=0.1), and skimming flow (H/W>0.15). The results also show that the normalized average concentrations at surface (z=1 m) between the barriers increase with increasing double noise-barrier height; however, normalized average concentrations at the top position between the barriers decrease with increasing barrier height. It was found that the double noise-barrier decreases normalized average concentrations of leeward positions, ranging from 0.8 (H/W=0.1, wake interface) to 0.1 (H/W=0.5, skimming flow) times lower than that of the no barrier case, at 10 x/h downwind position; and ranging from 1.0 (H/W=0.1) to 0.4 (H/W=0.5) times lower than that of the no barrier case, at 60 x/h downwind position.

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

Performance Characteristics of CVD Diamond Cutting Tools

  • Oles, E.J.;Cackowski, V.J.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 1996
  • CVD diamond tools are becoming more widely used in industry as an economic alternative to polycrystalline diamond (PCD) for machining non-ferrous and non-metallic materials. Although CVD diamond-sheet tools have been on the market for several years, diamond-coated carbide inserts have become available only recently, with the successful resolution of long-standing adhesion problems. Diamond coating morphology on the rake surface of the tool affects chip formation favorably, whereas a microscopically rough, faceted morphology on the flank surface of the tool produces a rough workpiece finish. Workpiece finish can be improved by using a coated tool with a larger nose radius. The tool life provided by diamond-coated tools(~30 $\mu\textrm{m}$ thick) can meet or exceed that of PCD tools, depending on the characteristics of the workpiece material. When using diamond-coated carbide tools in milling, a sharp-edged PCD tool should be used in the wiper position of the cutter to minimize workpiece roughness and burr formation.

  • PDF