• Title/Summary/Keyword: Roughness Position

Search Result 96, Processing Time 0.021 seconds

The Classification of Roughness fir Machined Surface Image using Neural Network (신경회로망을 이용한 가공면 영상의 거칠기 분류)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason so many studies were car-ried out through various attempts that were contact or non-contact using computer vision. Even through these efforts there were few good results in this research., however texture analysis making a important role to solve these problems in various fields including universe aviation living thing and fibers. In this study feature value of co-occurrence matrix was calculated by statistic method and roughness value of worked surface was classified, of it. Experiment was carried out using input vector of neural network with characteristic value of texture calculated from worked surface image. It's found that recognition rate of 74% was obtained when adapting texture features. In order to enhance recogni-tion rate combination type in characteristics value of texture was changed into input vector. As a result high recognition rate of 92.6% was obtained through these processes.

  • PDF

Obstacle Classification for Mobile Robot Traversability using 2-dimensional Laser Scanning (2차원 레이저 스캔을 이용한 로봇의 산악 주행 장애물 판단)

  • Kim, Min-Hee;Kwak, Kyung-Woon;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Obstacle detection is much studied by using sensors such as laser, vision, radar and ultrasonic in path planning for UGV(Unmanned Ground Vehicle), but not much reported about its characterization. In this paper not only an obstacle classification method using 2-dimensional LMS(Laser Measurement System) but also a decision making method whether to avoid or traverse the obstacle is proposed. The basic idea of decision making is to classify the characteristics by 2D laser scanned data and intensity data. Roughness features are obtained by range data using a simple linear regression model. The standard deviations of roughness and intensity data are used as measures for decision making by comparing with those of reference data. The obstacle classification and decision making for the UGV can facilitate a short path to the target position and the survivability of the robot.

SURFACE ROUGHNESS EFFECTS ON THE COERCIVITY OF THIN FILM HEADS

  • Kim, Hyunkyu;Horvath, M. Pardavi
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.663-666
    • /
    • 1995
  • The domain wall motion coercivity, $H_{c}$, of magnetic materials arises from the dependence of the wall energy on localized changes in material parameters (magnetization, anisotropy, exchange energy densities). However, in an otherwise perfectly homogeneous material, the domain wall energy might change due to the change in the volume of the wall versus the wall position. Thus, any surface roughness contributes to the coercivity. Assuming different two-dimensional surface profiles, characterized by average wavelengths ${\lambda}_{x}$ and ${\lambda}_{y}$, and relative thickness variations dh/h, the coercivity due to the surface roughness has been calculated. Compared to the one dimensional case, the 2D coercivity is reduced. Depending on the ratio of ${\lambda}$ to the domain wall width, $H_{c}$ has a maximum around 2, and increasing with dh/h. With the decreasing thickness of the thin film and GMR heads, it might be the domain factor in determining the coercivity.

  • PDF

Unsteady Flow Model for the Main Reach of the Han River : Calibration (한강 본류에 대한 부정류 계산모형 : 모형의 보정)

  • Hwang, Ui-Jun;Jeon, Gyeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.549-559
    • /
    • 1997
  • A multiply-connected network unsteady flow model for the main reach of the Han River is developed. It is a variable parameter model which allows variable roughness coefficient for each computational point according to the spatial position and the value of discharge. Sensitivities of the model to roughness coefficient and weir-flow discharge coefficient are tested, and as a result Manning's roughness coefficient is selected as the calibration parameter. The model is calibrated and verified using the records of the past flood events. A modified Gauss-Newton method is used for the optimal calibration of roughness coefficients. From the calibration of variable parameter model, spatial variation and discharge dependence of Manning's roughness coefficient are identified. That is, the roughness coefficient is higher for the upstream reach of the Wangsook stream Junction, and it decreases as the discharge increases. It turns out through the verification that the stages calculated by the variable parameter model agree better with the observed than those by the conventional single parameter model. Spatial variation of the roughness coefficient appears to be more significant than the dependence of the discharge.

  • PDF

A Terrain Rendering Method using Roughness Map and Bias Map (거칠기맵과 편향맵을 이용한 지형 렌더링 가법)

  • Lee, Eun-Seok;Jo, In-Woo;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • In recent researches, several LOD techniques are used for real-time visualization of large sized terrain data. However, during mesh simplification, geometry popping may occur in consecutive frames, because of the geometric error. We propose an efficient method for reducing the geometry popping using roughness map and bias map. A roughness map and a bias map are used to move vertices of the terrain mesh to appropriate position where they minimize the geometry errors. A roughness map and a bias map are represented as a texture suitable for GPU processing. Moving vertices using bias map is processed on the GPU, so the high-speed visualization can be possible.

An Investigation of Roughness Effects on 2-Dimensional Wall Attaching Offset Jet Flow (조도가 2차원 벽부착 제트유동에 미치는 영향에 관한 연구)

  • 윤순현;김대성;박승철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.219-230
    • /
    • 1995
  • The flow characteristics of a two-dimensional offset jet issuing parallel to a rough wall is experimentally investigated by using a split film probe with the modified Stock's calibration method. The mean velocity and turbulent stresses profiles in the up and down-stream locations of the wall-attachment regions are measured and compared with those of the smooth wall attaching offset jet cases. It is found that the wall-attachment region on the rough wall is wider than on the smooth wall for the same offset height and the jet speed. The position of the maximum velocity point is farther away from the wall than that for the smooth wall case because of the thick wall boundary layer established by the surface roughness. It is concluded that the roughness of the wall accelerates the relaxation process to a redeveloped plane wall jet and produces a quite different turbulent diffusion behavior especially near the wall from comparing with the smooth plane wall jet turbulence.

A Study on a Relationship Between the Surface Roughness of Fracture CT Specimen Broken by Fatigue Crack Growth and the Moments (피로균열성장에 의해 파단된 CT시험편의 표면조도와 모멘트의 관계에 관한 연구)

  • Kim, Kyun-Suk;Jung, Hyun-Chul;Kim, Kyung-Su;Park, Chan-Joo;Jang, Hos-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.462-468
    • /
    • 2010
  • Fatigue crack growth caused by surface defects is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LPG/LNG fuel tank and other various structures. So, this paper aims to investigate the relationship between the surface roughness of fracture CT specimens and the moments on the specimen when doing fatigue test for the evaluation and the assurance of safety of structures from fatigue crack deconstruction. In this experiment, the CT specimens were loaded by a fatigue testing machine with changing loads until they are broken. The surface roughness of the fracture CT specimens was measured using 3D precise shape measuring equipment and digital holography. As a result of this study, It was identified that the average roughnesses are similar at the positions that has a same moments by comparing the results with the moments on the specimen according to the position.

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

Automatic Automobile Control System with Multi-Sensor (다중센서를 이용한 무인자동차 제어시스템)

  • Han, Chang-Woo;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.339-347
    • /
    • 2001
  • Automatic automobile has been studied as the alternative energy system and the production flow automation device recently. But this is dependent on the import production, and its position cannot be controlled free from the fixed path. It is difficult to control the automobile position because of the eccentricity of inertia monent, slip and roughness between wheel and road surface. This problems is solved for the controller to be feedbacked the data of the multi-sensor system consisting of the rotary encoder and electronic compass. The proportional Integrated controller in the modified Ziegler-Nichols method is made up with Hitachi 7034 microprocessor. To the real time control the mechanical, electrical and electronic hardware and software device is produced by myself. The RF data of automobile speed and position is supplied to the remote PC to be displayed the automobile condition. By the experinent of the forward, spin, point path planning, it is known for autombile.

  • PDF

Tool Deflection and Geometric Accuracy to the Change of Inclination Position Angle during Machining Sculptured Surface (곡면가공시 경사위치각 변화에 따른 공구변형과 형상정밀도)

  • 왕덕현;박희철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.55-64
    • /
    • 2001
  • In this study, hemisphere and cylindrical shapes were machined for different tool paths and machining conditions with ball endmill cutters. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting is obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. Roundness values were found in least roundness error when down-milling in upward cutting. It is obtained the very little difference between 90。and 45。 of inclination position angle. The best surface roughness value was obtained in upward up-milling and showed different tendency with tool deflection and cutting force. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. Therefore, this phenomenon which is received over cutting resistance can be caused of chatter.

  • PDF