• Title/Summary/Keyword: Rough surface implants

Search Result 35, Processing Time 0.026 seconds

Expression of Growth factors during Osseointegration of Titanium Implant ; TGF-$\beta$, IGF-I, BMP2, BMP4 (타이타늄 임플란트 골유착시 성장인자들의 발현 ; TGF-$\beta$, IGF-I, BMP2, BMP4)

  • Jee, Yu-Jin;Kim, Soo-Hyun
    • The Journal of the Korean dental association
    • /
    • v.46 no.8
    • /
    • pp.494-504
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration process, which take place at the interface between bone and implant and biologic determinants such as cytokine, growth factors, bone matrix proteins play an important role in osseointegration. The purpose of this study is to compare the expressoin of TGF-$\beta$, IGF-I, BMP2, BMP4 during osseointegration. We designed an experimental group which was inserted with a RBM surface titanium implants and machined surface, and compared with a control group which had a simple bone cavity and normal bone. Titanium implants were placed into tibia of 8 rabbits. We compared the expression of TGF-$\beta$, IGF-I, BMP2, BMP4 using RT_PCR (reverse transcriptase chain reaction)analysis in day 3,7,14 and 28 of implant insertion. According to the results, growth factors of experimental groups were more expressed than control groups. Among experimental groups, expression of TGF-$\beta$, IGF-I, BMP4 of BMP group had tedency to increase more at 14th, 28th days than Machined surface group. Therefore, our results suggest that TGF-$\beta$, IGF-I, BMP4 are expressed within the bone around the implant and more increased around rough surface implants while osseointegration occurs after dental implant insertion.

  • PDF

AN EXPERIMENTAL STUDY OF NEWLY DESIGNED IMPLANT WITH RBM SURFACE IN THE RABBIT TIBIA : RESONANCE FREQUENCY ANALYSIS AND REMOVAL TORQUE STUDY

  • Won Mi-Kyoung;Park Chan-Jin;Chang Kyoung-Soo;Kim Chang-Whe;Kim Yung-Soo;Isa Zakiahbt Mohd;Ariffin Yusnidar Tajul
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.720-731
    • /
    • 2003
  • Statement of problem. The importance of fixture design and surface treatment. Purpose. The clinical success of dental in plants is affected by many factors such like as degree of osseointegration, the effective load dispersion for the prostheses, and a lot of attempts have been made to overcome the difficulties. In this study, efforts were made to find the possibility of clinical acceptance of the dental implants of newly designed surface and resorbable blast media surcace. Materials and methods. In this study, two groups of custom-made, screw-shaped implants were prepared. The first with the consisting of Branemark clone design and the other with the new design. These implants were divided into four groups according to the kinds of surface treatment. Four implants($AVANA^{(R)}$, Osstem, Busan, Korea)of each group were installed in twenty rabbits. Group A was consisted of Branemark done implant left as machined, Group B with Branemark clone implants with RBM(Resorbable blast media) surface, Group C with newly designed implants left as machined and Group D with newly designed implants with RBM surface. One of the twenty rabbits died from inflammation and the observation was made for six weeks. Specimens from four groups were observed using scanning electron microscopy with 40, 100, 1000 magnification power and microsurface structures were measured by white-light scanning interferometry for three dimensional surface roughness measurements(Accura $2000^{(R)}$, Intek-Plus, Korea.). Removal torque was measured in 17 rabbits using digital torque gauge(MGT 12R, Mark-10 corp., NY, U.S.A.) immediately after the sacrifice and two rabbits were used for the histologic preparation(EXAKT $310^{(R)}$, Heraeus Kulzer, wehrheim, Germany) of specimens and observed under light microscope. Resonance frequency measurement($Osstell^{(R)}$) was taken with the 19 rabbits at the beginning of the implant fixation and immediately after the sacrifice. Results. Following results were taken from the experiment. 1. The surface of the RBM implants as seen with SEM had rough and irregular pattern with reticular formation compared to that of fumed specimens showing different surface topographies. 2. The newly designed implant with RBM surface had high removal torque value among four groups with no statistical significance. The average removal torque was $49.95{\pm}6.70Ncm$ in Group A, $51.15{\pm}4.40Ncm$ in Group B, $50.78{\pm}9.37Ncm$ in Group C, $51.09{\pm}4.69Ncm$ in Group D. 3. The RFA values were $70.8{\pm}4.3Hz$ in Group A, $71.8{\pm}3.1Hz$ in Group B, $70.9{\pm}2.5Hz$, $72.7{\pm}2.5Hz$ in Group D. Higher values were noted in the groups which had surface treatment compared to the untreated groups with no statistical significance. 4. The results from the histomorphometric evaluation showed a mean percentage of bone-to-implant contact of $45{\pm}0.5%$ in Group A, $55{\pm}3%$ in Group B, $49.5{\pm}0.5%$ in Group C, and $55{\pm}3%$ in Group D. Quite amount of newly formed bone were observed at the surface RBM-treated implants in bone marrow space.

Retrospective studies of dental implant placement at each intraoral site and situation (임플란트 식립 유형에 따른 후향적 연구)

  • Hong, Ji-Youn;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Chae, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.805-824
    • /
    • 2007
  • Purpose: Developments in micro/macrostructures of implants and surgical techniques brought out stable outcomes of implant dentistry. The aim of this study was to evaluate the distributions of implant patients, the types of implanted sites, and the success or survival rates of various implant systems and to analyze the implant placement done at each specificintraoral site and situation. Materials and Methods: The data of dental implantations collected between 1992 and 2006 at the Department of Periodontology in 00000 University Hospital were analyzed. Results: 1. Largest part of the patients were at the age of 40s and 50s in bothgender who lost their teeth mostly by periodontaldiseases and caries at the posterior intraoral sites as major ones. Bone densities of type II(mandible) and III(maxilla) were likely to be seen with quantity of type B. Lengths of the implants between 10 and 15 mm and wide platform took the largest part. 2. Survival rates of $Implantium^{(R)}(98.8%)$, $Xive^{(R)}(100%)$ and ITI $TE^{(R)}(100%)$ were high when $Frialit-2^{(R)}$ showed 82%(poor bone density area) or 87.2%(combined with additional therapy). $IMZ^{(R)}$ had lowest cumulative survival(67.5%) and success rate(49.4%) amongst all. 3. Replacement with 2 wide or 3 regular platforms showed no significant differences in survival rate and marginal bone loss atmandibular posterior area. In single restoration of mandibular second molar, 5-year success rate of machined surface $Br{\aa}nemark^{(R)}(70.37%)$ was lower than that of rough surface $ITI^{(R)}$ SLA(100%). 4. Replacement of single tooth in anterior area showed high survival rate of 94.5%. 5. The success rates of $Br{\aa}nemark$ Ti-Unite and ITI SLA at posterior maxilla with poor bone density both showed stable outcomes. 6. 10-year cumulative survival rate of implants with maxillary sinus augmentation by lateral window approach appeared to be 96.60%. Low survival rate(75%) was shown when there were more than two complications combined. Height of grafted bone remained stable above the implant apex. Conclusions : Rough surfaced implants showed stable outcomes in most of the situation including poor bone density and additional therapy combined.

A Case Study on Precise NURBS Modeling of Human Organs (인체장기의 정밀한 NURBS 곡면 모델링 사례연구)

  • Kim H.C.;Bae Y.H.;Soe T.W.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.915-918
    • /
    • 2005
  • Advances in Information Technology and in Biomedicine have created new uses for CAD technology with many novel and important biomedical applications. Such applications can be found, for example, in the design and modeling of orthopedics, medical implants, and tissue modeling in which CAD can be used to describe the morphology, heterogeneity, and organizational structure of tissue and anatomy. CAD has also played an important role in computer-aided tissue engineering for biomimetic design, analysis, simulation and freeform fabrication of tissue scaffolds and substitutes. And all the applications require precision geometry of the organs or bones of each patient. But the geometry information currently used is polygon model with none solid geometry and is so rough that it cannot be utilized for accurate analysis, simulation and fabrication. Therefore a case study is performed to deduce a transformation method to build free form surface from a rough polygon data or medical images currently used in the application. This paper describes the transformation procedure in detail and the considerations for accurate organ modeling are discussed.

  • PDF

Microstructural Change of Implant Surface conditioned with Tetracycline-HCI;SLA and TB surface implant (표면처리 시간에 따른 임플란트 미세구조의 변화;SLA와 TB 표면 임플란트)

  • Woo, Jung-A;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.921-937
    • /
    • 2005
  • Mechanical and chemical methods are the two ways to treat the implant surfaces. By using mechanical method, it is difficult to eliminate bacteria and by-products from the rough implant surface and it can also cause the structural change to the implant surface. Therefore, chemical method is widely used in order to preserve and detoxicate the implant surface more effectively. The purpose of this study is to evaluate the effect of tetracylcline- HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used in this study. Implant surface was rubbed with sponge soaked in 50mg/ml tetracycline - HCl solution for $\frac{1}{2}$ min., 1min., $1\frac{1}{2}$ min., 2 min., and $2\frac{1}{2}min.$ respectively in the test group and with no treatment in the control group. The sponge was soaked in every 30 seconds. Then, the specimens were processed for scanning electron microscopic observation. Based upon the analysis of photographs by three dentists who are not related with this study, the results were obtained as follows; 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. Subsequently, the acid-etching process created the micro roughness, which thus was superimposed on the macro roughness. Irrespective of the application time of 50mg/ml tetracycline - HCl solution, in general, test specimens were similar to control. 3. In the $TiO_2blasted$ surfaces, the control specimen showed the rough surface With small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline - HCl solution was lessened and the flattened areas got wider after 1 minute.

THE EFFECT OF VARIOUS SURFACE TREATMENT METHODS ON THE OSSEOINTEGRATION (임플랜트의 표면처리 방법이 골유착에 미치는 영향에 관한 연구)

  • Choi Jeong-Won;Kim Kwang-Nam;Heo Seong-Joo;Chang Ik-Tae;Han Chong-Hyun;Baek Hong-Gu;Choi Yong-Chang;Wennerberg Ann
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.71-83
    • /
    • 2001
  • The purpose of this study was to compare the effects of various surface treatments by measuring removal torque on bone healing around titanium implants. 40 Screw-shaped cp titanium implants with length of 4mm, outer diameter of 3.75mm, and pitch-height of 0.5mm were used Group 1 was left as machined(control), Group 2 was blasted with $50{\mu}m\;Al_2O_3$, group 3 was blasted and etched in etching solution($NH_4OH : H_2O_2:H_2O= 1 : 1 : 5$) at $90^{\circ}C$ for 1 minute group 4 was blasted and oxidated under pure oxygen at $800^{\circ}C$. The implant surface roughness was analyzed with SEM and CLSM(Confocal Laser Scanning Microscope) and implants were placed in proximal tibial metaphysis of 10 New Zealand White rabbits. After 3 months of healing period, removal torque of each implant was measured to compare bone healing around implant. The results obtained were as follows 1. In SEM view, blasting increased the roughness of the surface, but etching of that rough surface decreased the roughness due to the removal of the tip of the peak. Oxidation also decreased the roughness due to formation of needle-like oxide grains on the implant surface. 2. The Sa value from CLSM was least in the machined group($0.47{\mu}m$), greatest in blasted group($1.25{\mu}m$), and the value decreased after etching($0.91{\mu}m$) and oxidation($0.94{\mu}m$). 3. The removal torque of etched group(24.5Ncm) was greater than that of machined group(16.7Ncm) (P<0.05), and was greatest in the oxidated group(40.3Ncm) and the blasted group(34.7Ncm).

  • PDF

Microstructural Change of Porous Surface Implant conditioned with Tetracycline-hydrochloride (염산티트라싸이클린의 적용시간에 따른 다공성 임프란트 표면 미세구조의 변화)

  • Jeong, Jae-Wook;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.319-334
    • /
    • 2006
  • Mechanical and chemical methods are the two ways to treat the implant surfaces. By using mechanical method, it is difficult to eliminate bacteria and by-products from the rough implant surface and it can also cause the structural change to the implant surface. Therefore, chemical method is widely used in order to preserve and detoxicate the implant surface more effectively. The purpose of this study is to evaluate the effect of tetracylcline-hydrochloride(TC-HCI) on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and porous surface were used in this study. Implant surface was rubbed with sponge soaked in 50mg/ml TC-HCI solution for $\frac{1}{2}$ min., 1 min., $1\frac{1}{2}$ min., 2 min., and $2\frac{1}{2}$ min. respectively in the test group and with no treatment in the control group. Then, specimens were processed for scanning electron microscopic observation. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. Subsequently, the acid-etching process created the micro roughness, which thus was superimposed on the macro roughness. Irrespective of the application time of 50mg/ml TC-HCI solution, in general, test specimens were similar to control. 3. In the porous surfaces, the control specimen showed spherical particles of titanium alloy and its surface have a few shallow ridges. The roughness of surfaces conditioned with tetracycline-HCI was lessened and seen crater-like irregular surfaces relative to the application time. In conclusion, pure titanium machined surfaces and SLA surfaces weren't changed irrespective of the application time of tetracycline-HCI solution. But the porous surfaces conditioned with tetracycline-HCI solution began to be slightly changed from 2 min. This results are expected to be applied to the regenerative procedures for peri-implantitis treatment.

The Micromorphometric change of the GBA and RBM implant surface conditioned with tetracycline-HCI (염산테트라싸이클린 적용시간에 따른 GBA 및 RBM 임프란트 표면변화)

  • Park, Kang-Hun;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.705-716
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-HCl on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, GBA surface and RBM surface were utilized. Implant surface was rubbed with 50mg/ml tetracycline-HCl solution for ${\frac{1}{2}}$min. 1min. $1{\frac{1}{2}}$min. 2min. and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follow. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two group. 2. In GBA surfaces, control group exhibit many porous depression, and each depression were divided by strict border. Experimental group applied with tetracycline-HCl for 2min. were similar with control group. But when applied for $2{\frac{1}{2}}$min. surface alteration and border breakdown started, resulting enlargement of the porous depression. 3. In REM surface, control group exhibit rough, uneven surface with crater-like depression can be found. The surface alteration started when tetracycline-HCl was applied for 30sec. resulting breakdown of the crater-like depression. Depression became larger as applying time increased.

An investigation of reosseointegration according to time course after mechanical loosening of the osseointegrated implant fixtures (표면처리 임플란트 고정체의 의원성 동요 후 시간 경과에 따른 재골유착에 관한 연구)

  • Ye, Sun-Hae;Cho, Jin-Hyun;Lee, Cheong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.203-211
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the reosseointegration periods when the rough surface implants, which had complete bone-implant ankylosis, suddenly losed the osseointegration. Materials and Methods: The implants with RBM surface treatment were inserted into both tibias of 23 rabbits. Two implants were submerged into each side. After six weeks, the primary removal torque was measured by Digital torque gauge, and then the implants were replaced and submerged to estimate the level of reosseointegration. After assigned healing periods for each group, the removal torque was measured again. BIC (Bone-Implant contact, %) ratio was measured through histomorphometric analysis.Paired t-test was processed by SPSS 14.0. One-way ANOVA and Tukey's post-hoc test was processed to analyze statistically significant differences among the groups. Results: In comparison with the primary removal torque, the secondary removal torque was increased after 11 days and significantly increased from 2 weeks. In fluorochrome labeling, the origin of mineralization was observed after 7 days, which showed as fluorescent bands around the bone-implant interfaces. After 11 days, the bone formation was apparent, and it is increased continuously with the passage of the time. Conclusion: In 11 days after the implant replacement, the secondary removal torque was almost as same as the primary value, and was significantly higher from 2 weeks. The mineralized shapes were observed in 7 days after the implant replacement, and then the bone formation appeared visibly in 11 days.

Scanning Electron Microscopic Study of the Effect of Tetracycline-HCl on the Change of Implant Surface Microstructure according to Application Time (염산테트라싸이클린의 적용시간에 따른 임플란트 표면변화에 관한 주사전자현미경적 연구)

  • Kim, Woo-Young;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.523-537
    • /
    • 2002
  • The present study was performed to evaluate the effect of tetracycline - HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used. Implant surface was rubbed with 5Omg/ml tetracycline - HCl solution for ${\frac}{1}{2}$ min., 1 min., $1{\frac}{1}{2}$ min., 2 min., and 3min. respectively in the test group and with no conditioning in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. subsequently, the acid-etching process crated the micro roughness, which thus was superimposed on the macro roughness. 3. In the SLA surfaces, irrespective of the application time of 50mg/ml tetracycline-HCl solution, in general, test specimens were similar to control. 4. In the $TiO_2blasted$ surfaces the control specimen showed the rough surface with small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline-HCl solution was lessened and the flattened areas were wider relative to the application time of tetracycline - HCl solution. In conclusion, pure titanium machined surfaces and SLA surfaces weren't changed irrespective of the application time of tetracycline-HCl solution. And the $TiO_2blasted$ surfaces conditioned with tetracycline - HCl solution began to be changed from $1{\frac}{1}{2}$ min. This results are expected to be applied to the regenerative procedures for peri-implantitis treatment.