• Title/Summary/Keyword: Rough rice drying

Search Result 66, Processing Time 0.027 seconds

Effect of Drying Temperature of Rough Rice on Grain and Eating Quality (벼의 건조온도가 미질과 식미에 미치는 영향)

  • ;Eun-Woong Lee;Yong-Woong Kwon;Jeon-Woo Bang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.4
    • /
    • pp.345-350
    • /
    • 1991
  • Rough rice samples of Chucheongbyeo, Bongkwangbyeo and Hwaseongbyeo were collected by the National Agricultural Products Inspection Office. Drying methods of rough rice were sun drying and forced ventilation drying by an oven dryer and temperature of the oven dryer was set to 43, 60, 70, or 8$0^{\circ}C$. Moisture content of samples was reduced from ca. 20% to 15% at the end of drying, and additionally to 12.5 % for the drying at 8$0^{\circ}C$. Characteristics related to rice grain quality, milling recovery, ratio of broken and cracked rices, percentage of germination, and sensory scores of the cooked rices were evaluated. Yielding percentage of brown rice and polished rice remarkably decreased by drying at 8$0^{\circ}C$. Percentages of cracked rice and broken rice were within the criterion of the second grade government brown rice (20%) only in the sun dried and the rices dried at 43$^{\circ}C$, on the basis of damaged rice, opaque kernel rice and colored rice. Broken rice percentage of the polished rice was within the criterion for the standard of government rice (5%) in the sun dried and the rices dried at 43$^{\circ}C$. Germination percentage of rough rice was higher than 80% in sun drying and drying at 43$^{\circ}C$, but remarkably decreased by drying rice at 6$0^{\circ}C$ and over. Sensory palatability of the cooked rice decreased with increase in drying temperature. The present governmental method of judging rough rice on the basis of moisture content and appearance of the rough rice appears to be improved to include the ratio of broken and cracked rices.

  • PDF

Experimental Studies for Solar Drying System of Agricultural Products(II) - Solar drying characteristics for rough rice - (태양열 건조 시스템에 관한 실험적 연구(II) - 벼의 태양열 건조 특성 -)

  • Koh, Hak-Kyun;Kim, Yong-Hyeon;Song, Dae-Bin;Park, Jae-Bok
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.21-30
    • /
    • 1991
  • In-bin grain drying experiments were performed to investigate the drying characteristics between natural air and solar heated-air drying system of rough rice. A computer simulation model for solar drying system of rough rice resulted in a good agreement between the experimental and predicted moisture content. In order to save the electric energy consumption of fan, airflow rates control system using inverter was developed and resulted in the effect of energy saving.

  • PDF

Development of a Grain Moisture Content Measurement Sensor for Automatic Control of Rough Rice Drying by Natural Air (미곡(米穀) 상온통풍건조(常温通風乾燥)의 자동제어용(自動制御用) 곡물(穀物) 함수율(含水率) 측정(測定)센서 개발(開發))

  • Kim, T.K.;Chang, D.I.;Kim, M.S.;Kim, T.K.;Hong, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 1988
  • This study was conducted to develop a grain moisture content measurement sensor for automatic control of rough rice drying by natural air. For the above objective, the electrod type sensor was designed and tested. The sensor was able to produce electrical resistance which changes with moisture content of grain. An A/D converter and a micro-computer wed for processing measurement data of sensor. The developed sensor satisfied most design requirements and the results of statistical analysis show that there it no difference between the measurement method of sensor developed and of the dry-oven. Using the developed sensor and measurement system, we are able to measure moisture content of rough rice automatically in drying by natural air.

  • PDF

Drying Characteristics of Rough Rice in Continuous Dryer

  • Song, D.B.;Koh, H.K.;Keum, D.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.863-877
    • /
    • 1996
  • A drying model to predict the drying process in continuous dryer was developed and proved by drying experiments. The experiment showed that the difference of moisture contents between the predicted and the observed was within 0.5%(wb). There was no cracked rice found even in high drying rate with the inlet moisture content over 23%(wb), and tempering treatment in the same temperature reduced the ratio of cracked rice. There was a little difference in the ratio of cracked rice between 40$^{\circ}C$ and 45$^{\circ}C$ drying temperatures with the final drying moisture content (14.5% wb), and the cracked rice increased at 55$^{\circ}C$. As a results, it was better to make fast drying on the rice over 23%(wb) inlet content it was recommended to keep drying at 45$^{\circ}C$.

  • PDF

Development of an Energy Model of Rice Processing Complex(II) -Simulation Model Development and Analysis of Energy Requirement- (미곡종합처리장의 에너지 모델 개발(II) -시뮬레이션 모델 개발 및 소요 에너지 분석-)

  • 장홍희;장동일;김만수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.275-287
    • /
    • 1995
  • The rice processing complex(RPC) consisted of the rice handling, drying, storage, and milling processes. It has been established at 83 locations domestically by April 1994, and 200 of RPC will be built more throughout the country. Therefore, this study has been performed to achieve two objectives as the followings : 1) Development of mathematical models which can assess the requirement of electricity, fuel, and labor for four model systems of rice processing complex. 2) Development of a computer simulation model which produce the improved designs of RPC by the evaluation results of energy requirements of four RPC models. The results from this study are summarized as follows : 1) Mathematical models were developed on the basis of result of mass balance analysis and required power of machines for each process. 2) A computer simulation model was developed, which can produce the improved designs of RPC by the evaluation results of energy requirements. The computer simulation model language was BORLAND $C^{++}$. 3) The results of simulation showed that total energy requirements were ranged from 75.94㎾h/t to 124.30㎾h/t. 4) From the results of computer analysis of energy requirement classified by drying type, it was found that energy requirement of the drying type A{paddy rice (PR) for storage-natural air drying(15%), PR for milling-heated air drying(16%)} were less than that of the drying type B{1 step-natural air drying(PR for storage : 18%, PR for milling : 20%), 2 step-heated air drying(PR for storage : 15%, PR for milling : 16%)}. 5) The energy efficient drying method is that all the incoming rough rice to RPC should be dried by national air drying systems. If it is more than the capacity of national air drying system, the amount of surplus rough rice is recommended to be dried by the heated air drying method.

  • PDF

UTILIZATION OF ENGINE-WASTE HEAT FOR GRAIN DRYING IN RURAL AREAS

  • Abe, A.;Basunia, M.A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.957-966
    • /
    • 1996
  • An attempt was made to measure the availability of waste heat, released from the cooling system of a small engine, which can be utilized for grain drying. An engine powered flat-bed rough rice dryer was constructed and the performance of the dryer with available engine-waste heat was analyzed for 10 , 20, 30 and 40 cm rough rice bulk depths with a constant dryer base area of 0.81$m^2$/min. The waste heat was sufficient to increase the drying air temperature 7 to 12$^{\circ}C$ at an air flow rate of 8.8 to 5.7㎥/min, while the average ambient temperature and relative humidity were 24$^{\circ}C$ and 70%. The minimum energy requirement was 3.26 MJ/kg of water removed in drying a 40 cm deep grain bed in 14h. A forty to fifty centimeter deep grained seems to be optimum in order to avoid over-drying in the top layers. On the basis of minimum energy requirement (3.26 MJ/kg ) , an estimation was made that the waste heat harvest from an engine of a power range of 1 to 10.5PS can dry about 0.1 to 1 metric on of rough rice from 23% to 15% m.c. (w.b) in 12 h at an average ambient temperature and relative humidity of $25^{\circ}C$ and 80%, respectively. The engine-waste heated grain dryer can be used in the rural areas of non industrialized countries where electricity is not available.

  • PDF

An Experimental Study for Dryer (건조기 고안 제작에 관한 연구)

  • 최재갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3677-3684
    • /
    • 1975
  • A newly devised dryer with heated air for the farm products, especially suited for high water content materials such as red pepper, Beer ground, each Vegetables, and Low water content materials such as Rough rice was tested for its thermal efficiency and drying mechanism, and the optimum conditions for each sample were established. In order to improve the present rural situation of drying farm products which entirely dependent upon natural solar radiation, a study upon an economic multi-parpose dryer was conducted. A series of drying tests were run first with red pepper which is one of the important cash crop in Korean farm. And successive series of tests were also run with such proaucts as garlic, sweet potatoes, green onion, radish, Beer ground and Rough rice. The results from the above experiment in drying system with heat dryer can be summarized as follows. 1. Drying duration could be shortened by the tempering effect in high water content crop such as red pepper and beer ground. 2. The color changes occured in around 20% water content in red pepper. The degree of color change was heavily affected by high temperature and short drying duration. 3. The drying condition of red pepper was most favourable at the temperature of 85$^{\circ}C$ in early stage and 80$^{\circ}C$ in middle stage and 75$^{\circ}C$ at the final stage, and with the air rate of 0.81㎥/sec and with sample amount of 200kg. 4. The drying condition of Rough rice(I.R.667) was most favourable at the templature of 40$^{\circ}C$ in early stage and 35$^{\circ}C$ in middle stage and final stage and with the air rate of 0.2㎥/sec and with sample amount of 75kg. 5. In order to prevent the color change of red pepper and to assure high efficiency in drying mechanism, it was necessary to lower the temperature as the time passes in drying process. 6. For vege tables, the drying rate were short in early stage and there was also tempering effect. However, for garlics, Constant drying rates through the early and final stages were observed and there were no tempering effects. 7. The drying condition or capability were as follows; Sample drying temp($^{\circ}C$) amount of material(kg) drying time(hr) Red pepper 85 200 9 Garlic 85 150 7 Sweet potato 85 200 6 Green Onion 85 200 4 Carrot 85 200 4 Radish 90 250 4 Rough rice(I.R.667) 35 75 4 Beer ground 90 320 3 Considering the above result of experiments, if this kind of dryers were distributed Korean farm and the optimun process were practiced in rural area, it would certainly help them improving the qualites of their product preventing their undue losses, and thus assuring an increase of Korean farm income and promotion of their living standards.

  • PDF

Quality Characteristics of Rough Rice during Low Temperature Drying (저온건조 중 벼의 품질 특성)

  • Kim, Hoon;Han, Jae-Woong
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.650-655
    • /
    • 2009
  • This study was conducted to measure the quality characteristics of rough rice during low temperature drying by using an experimental dryer and heat pump with a capacity of 150kg at four temperature levels of 20, 30, 40, and $50^{\circ}C$. The quality and proper drying temperature of rough rice was investigated by measuring variations in moisture content, crack rates, germination rates and cooked rice. Temperatures over $40^{\circ}C$ is considered a high-temperature area, and below $40^{\circ}C$ is considered a low-temperature area. The drying rates were 0.3, 0.6, 0.9, and 1.3%/hr, and the crack ratios were 0, 1.6, 6.8, and 24.2% at the drying temperatures of 20, 30, 40, and $50^{\circ}C$, respectively, which showed that the higher the drying temperature was, the higher the drying rate and crack rate was. Therefore, 20 and $30^{\circ}C$ were found to be appropriate drying temperatures for avoiding crack formation, and $50^{\circ}C$ was inappropriate. At $40^{\circ}C$, the operation methods needed to be modified to limit cracking, such as increasing the tempering time. Also, as the drying temperature increased, the germination rate decreased. Germination rates at 20 and $30^{\circ}C$ were suitable for using the rough rice as a seed, and those at 40 and $50^{\circ}C$ were over 80%, which is the minimum allowable percentage. In the sensory evaluation of cooked rice, the quality of appearance, taste, and texture varied as a function of drying temperature. When considering these factors, the cooked rice that was dried at 20 and $30^{\circ}C$ was better than the cooked rice dried at high-temperature. Consequently, in view of drying temperature and rates, the best conditions for drying rough rice were below $30^{\circ}C$ and below 0.6%/hr.

Development of a Rice Circulating Concurrent-flow Dryer(II) - Validation of Drying Simulation Model - (순환식 병류형 곡물건조기 개발(II) - 시뮬레이션모델의 검증 -)

  • Han, J.W.;Keum, D.H.;Kim, H.;Hong, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.309-315
    • /
    • 2007
  • This study was performed to develop a simulation model of circulating concurrent-flow rice dryer. The simulation model consists of drying model, tempering model and crack prediction model. The drying and tempering models were developed based on mathematical analysis, and the crack prediction model was developed by thin layer drying tests. Rice drying tests were done with three replications by use of a pilot scale dryer of holding capacity of 700 kg. Experimental values for moisture content, rice temperature, rice crack, and drying energy were compared with predicted values by simulation model. The RMSEs of predicted moisture contents were ranged from 0.5807% (d.b.) to 1.1951% (d.b.). and the coefficients of determination were 0.9688 to 0.9812. The RMSEs of predicted rice temperatures at the exit of the drying chamber were 1.83 to $3.81^{\circ}C$ and the coefficients of determination were 0.8834 to 0.9482. The results for moisture contents and rice temperatures showed very good relationships between predicted values and experimental values. The RMSEs of predicted value of crack ratio were 0.4082 to 0.7967% and the coefficients of determination were 0.8742 to 0.9547.

DEVELOPMENT OF A GRAIN CIRCULATING TYPE NATURAL AIR IN-BIN DRYER

  • Yun, H.S.;Chung, H.;Cho, Y.G.;Park, W.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.405-412
    • /
    • 2000
  • A natural air in-bin grain dryer with a grain circulator was developed for on farm use. Natural air drying test for rough rice was carried out to evaluate drying rate, uniformity of moisture content distribution in grain bed and energy consumption. It took 10 days to dry 8 ton of paddy rice from 21.9%(w.b) to 16.7%(w.b) moisture contents using the prototype dryer. The average drying rate was 0.52%/day. The uniformity of moisture content after drying was superior to the conventional natural air dryer where is grains were not circulated during drying periods. The dryer performance evaluation index was 738.3KJ/(kg.water), which was more effective than that of grain circulation t)pe hot air dryer(3,500-5,000 KJ/kg.water).

  • PDF