• Title/Summary/Keyword: Rotor-dynamics

Search Result 407, Processing Time 0.033 seconds

Dynamic Analysis of Spindle Supported by Multiple Bearings of Different Types (복합베어링으로 지지된 스핀들의 동적 해석)

  • Tong, Van-Canh;Bae, Gyu-Hyun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • This paper presents a dynamic modeling method for the indeterminate spindle-bearing system supported by multiple bearings of different types. A spindle-bearing system supported by ball and cylindrical roller bearings is considered. The de Mul's bearing model is extended for calculating ball and cylindrical roller bearing stiffness matrices with inclusion of centrifugal force and gyroscopic moment. The dependence between spindle shaft reaction forces and bearing stiffness is effectively resolved using an iterative approach. The spindle rotor dynamics is established with the Timoshenko beam theory based finite elements. The spindle reaction forces, bearings stiffness and spindle natural frequencies are obtained with taking into account spindle radial load, ball bearing axial preload and rotational speed effects. The developed method is verified by comparing the simulation results with those from a commercial program.

Visualization and Computational Analysis for Flow around Rotating Blades (회전하는 블레이드 주위의 유동가시화 및 전산유동해석)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • The optimal design is needed for the blade geometry of the quad-rotor blades which is mainly used for Unmanned Aerial Vehicle. To do this, it is important to analyze the wakes under the blades. In the present study, the flow around the rotating blades was analyzed using PIV(Particle Image Velocimetry) and CFD(Computational Fluid Dynamics). The maximum axial velocity was measured at about 60% position toward the radial direction of the blade. The positions of vorticities in the test section obtained by PIV and CFD were turned out to be almost alike. The values in the difference of pressure coefficients at the upper and the lower blades were increased depending on the radial direction. Then, the values were decreased at the blade tip. The data of the flow analysis in the present study are expected to be served as the design of blades and ducts for the thrust improvement in the future.

Characterization and Detection of a Free-falling State of a Mobile HDD Using the Electromechanical Analysis in a Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.12-18
    • /
    • 2006
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by the fluid dynamic bearing under the free-falling condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravity force exerted on the rotating part of HDD, and the free-falling condition can be detected by observing the signal of the spindle motor and disk-head interface without using an accelerometer.

Estimate of the power characteristics of the 500kw wind turbine based on 3D numerical solutions (500kW급 풍력터빈의 성능평가에 관한 수치해석적 연구)

  • KIM Beom-Seok;LEE Jin-Seok;KIM Jeong-Hwan;LEE Do-Hyung;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.140-145
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and compare to calculation data(BEM method) from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes Solvers are considered a very serious contender. We has used the CFD software package CFX-TASC flow as a modeling tool to predict the power performance of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$ and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

Numerical and experimental study on dynamic response of moored spar-type scale platform for floating offshore wind turbine

  • Choi, E.Y.;Cho, J.R.;Cho, Y.U.;Jeong, W.B.;Lee, S.B.;Hong, S.P.;Chun, H.H.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.909-922
    • /
    • 2015
  • The dynamic response and the mooring line tension of a 1/75 scale model of spar-type platform for 2.5 MW floating offshore wind turbine subject to one-dimensional regular harmonic wave are investigated numerically and verified by experiment. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass the scale model and three mooring lines are pre-tensioned by means of linear springs. The coupled fluid-rigid body interaction is numerically simulated by a coupled FEM-cable dynamics code, while the experiment is performed in a wave tank with the specially-designed vision and data acquisition system. The time responses of surge, heave and pitch motions of the scale platform and the mooring line tensions are obtained numerically and the frequency domain-converted RAOs are compared with the experiment.

PSCAD/EMTDC Simulation Model of Variable Speed Wind Power Generation System Using Permanent Magnet Synchronous Machine (영구자석형 동기기에 의한 가변속 풍력발전 시스템의 PSCAD/EMTDC 시뮬레이션 모델 개발)

  • Kim Jeong-Jae;Song Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.610-617
    • /
    • 2005
  • A variable speed wind turbine simulation model for grid connection is developed based on PSCAD/EMTDC. The model consists of wind model, rotor dynamics, synchronous generator, power converter, transformer, distribution line and infinite bus. Implementation of blade characteristics and power converter control strategies are included. Several transient case studies are performed including wind speed change, local load change and grid-side voltage unbalance using developed simulation model. The results of this work can be utilized for study of actual interaction between wind turbine and grid for reliable operation and protection of power system.

A Study on the Development of Virtual Reality Framework for Visualizing Rotor Dynamics Data on Immersive VR Environments (몰입형 가상현실 환경에서의 로터 동역학 데이터 가시화를 제어하는 가상현실 프레임워)

  • Hur, Young-Ju;Kim, Min-Ah;Lee, Joong-Youn
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.271-274
    • /
    • 2010
  • 컴퓨터에서 생성된 시뮬레이션의 결과는 일련의 가시화(VIsualization)라는 과정을 거치면서 컴퓨터 그래픽스 기술이 적용됨으로써 인간이 해석하기 쉬운 형태로 변형되게 된다. 연구자가 직관적으로 이해하기 어려운 수치의 나열로 구성돼 있던 시뮬레이션 데이터가 보다 쉽게 이해하고 분석할 수 있게 되는 것이다. 그런데, 최근에는 고성능 컴퓨터(HPC)의 발달로 인해 시뮬레이션 데이터의 크기가 점점 더 증가하는 추세에 있으며, 데이터의 크기가 기가바이트를 넘어 테라바이트에 이르는 경우도 흔해지고 있다. 기존의 가시화 시스템에서 복잡해진 가시화 데이터를 면밀하게 해석하기에는 많은 제약이 따르며, 그로 인해 고해상도 디스플레이 장치나 몰입형 가상현실 장치의 도입은 필연적일 수밖에 없다. 특히 현 시점에서 클러스터 시스템을 이용한 고해상도의 디스플레이 장치에서 사용자와 상호작용할 수 있는 인터페이스를 제공하는 방법은 가상현실 환경을 적절히 활용하는 것이 거의 유일하다 할 수 있겠다. 본 논문에서는 시뮬레이션 데이터, 특히 로터 동역학 분야의 시뮬레이션 데이터를 가상현실 환경에서 가시화하고 제어하는데 필요한 프레임워크와 인터페이스를 소개할 것이다. 이 프레임워크는 가상현실 환경에서 로터 동역학 분야의 시뮬레이션 데이터와의 실시간 상호작용을 통한 해석을 수행하는데 필요한 기반환경을 제공할 것이다.

  • PDF

Journal Bearing Design Retrofit for Process Large Motor-Generator - Part I : Bearing Performance Analysis (프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part I : 베어링 성능해석)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.197-202
    • /
    • 2012
  • In this study, with the purpose of fundamentally improving the unbalance response vibration of a large PRT motor-generator rotor by design, a performance improvement design analysis is carried-out by retrofitting tilting pad bearings, replacing the plain partial journal bearings that were originally applied for operation at a rated speed of 1,800 rpm. In this process, a goal of the design analysis is to obtain a design solution for maximizing the direct stiffness of the bearings while satisfying the key basic lubrication performance requirements such as the minimum lift-off speed and maximum oil-film temperature. The results show that with a careful design application of tilting pad journal bearings for operation at such a relatively low speed of 1,800 rpm, direct stiffness increment of the bearings by about two times can be effectively achieved. Prevention of pad unloading is also considered in the analysis. Moreover, the designs of elliptical and offset half journal bearings are also analyzed and reviewed.

Characterization and Detection of a Free-Falling State of a mobile HDD Using Electromechanical Analysis in Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.324-329
    • /
    • 2005
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by fluid dynamic bearing under the free-failing condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravely force exerted on the rotating part of HDD, and the free-failing condition can be detected by observing the signal of the spindle motor and disk-head interface without using the accelerometer.

  • PDF

Development of Engine Vibration Analysis and Monitoring System(EVAMOS) for Marine Vessels (선박용 엔진 진동 분석 및 모니터링 시스템(EVAMOS) 개발에 관하여)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, E.S.;Kim, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Engine builders have separately developed and applied torsional, axial and structural vibration monitoring system on most marine engines. These systems displayed their results for engine or ship operation engineers and were not regularly stored at the hardware of computer. So, the history and trend of various engine and hull vibrations were not supported for preventive maintenance and to protect the failure of these activity or function. The integrated vibration or stress monitoring system(EVAMOS : engine vibration analysis and monitoring system) in marine diesel engine, its accessories and hull structure have been developed by the dynamics laboratory of Mokpo Maritime University during last 3 years. This paper introduces the design conception and ability of commercial software EVAMOS with field data on several actual tests.