• Title/Summary/Keyword: Rotor position detecting

Search Result 51, Processing Time 0.023 seconds

A position Detector of Permanent Magnet Step Motors (영구 자석형 스텝모터의 위치 검출)

  • 원종수;정훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.703-712
    • /
    • 1987
  • A position detection method for 2 phase bifilar permanent magnet step motors is proposed. The back emfgenerated on 2 phase windings by rotor permanent magnet is calculated using motor terminal voltage and current by analog circuit, and the rotor position output is obtained from tese back emf signals through some logical manipulation circuit. This position detector functionally acts like a 2 channel optical incremental encoder, and it is also shown by experimental results that it works well over wide range of speed or under resonant condition where the rotor rings around the detent position. Its resolution is twice of the number of steps per revolution. Bu software implemented on micro-processor, the reliability of position output is enhanced, detecting and correcting error dut to external and/ or internal noise.

Initial Rotor Position Detection a PM Synchronous Motor and Speed Control of an Elevator Door (영구자석 동기전동기의 회전자 초기위치 검출 및 엘리베이터 도어의 속도제어)

  • Song, Ki-Young;Oh, Hyun-Cheal;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.556-564
    • /
    • 2013
  • This paper proposes an initial rotor position detecting algorithm of a PM synchronous motor using an incremental encoder. The proposed algorithm estimates the phase offset between the rotor magnetic flux and the Z-pulse of the incremental encoder by applying six aligning mode current control. The absolute rotor position for driving a PM synchronous motor is calculated by using the phase offset of the Z pulse and A, B pulse signals of the encoder. The PMSM drives based on the estimated rotor position is applied to the elevator door system. The door length is measured on line at first setup of the elevator. The speed control for open, close, and reopen of the elevator door is also presented and the proposed algorithm for the elevator door system is verified by experiment.

A Study on the Resolver Interface using a Rotor Position Detector Method with DFT (DFT에 의한 회전자 위치 검출 방법을 사용한 레졸버 인터페이스에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4550-4560
    • /
    • 2011
  • Generally, a optical encoder is used to detect velocity for controling the electronic motor, the resolver is used when it is hard structurally to adjust encoder to electronic motor. so, the resolver has weakness in price in compare with encoder, but in case of controling the position of a magnetic polar, the resolver has stead detecting the absolute position of a rotator. This study is about the digital programing velocity detector which uses a minimum hardware : filter for detecting the revolve speed and rotor position of the motor by means of the resolver.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

Sensorless SRM Drive using a Simple Phase Current Detection (간단한 상전류 검출기법에 의한 센서리스 SRM 운전)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;An, Young-Ju;An, Jin-U
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.629-630
    • /
    • 2006
  • This paper describes a novel sensorless excitation position detecting method of Switched Reluctance Motor(SRM) drive. A suitable excitation pattern of each phases is determined by comparison of detecting current without an inductance estimation. The principle of the rotor position estimation is based on the detection of phase current according to rotor position. This sensorless method is very simple and gives efficient control of drive system. The suggested method is verified by experiments.

  • PDF

Sensorless Drive Method using Back EMF Analysis of Single Phase Switched Reluctance Motor (단상 SRM의 역기전력 분석을 통한 센서리스 구동기법)

  • Sun, Han-Geol;Shin, Duck-Shick;Yang, Hyong-Yeol;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2008
  • This paper proposes a sensorless drive method that estimates the rotor position by analysing Back EMF of single-phase Switched Reluctance motor (SRM). The rotor position information is necessary required, because SRM's torque is generated by exciting a stator winding according to rotor position. In order to detect the position of the rotor, the various rotor position sensors have been used. However, most of the position sensors not only increase the construction cost and the volume of the motor but also decrease reliability of driving system with environment. This paper proposed the method using the Back EMF to solve such problems. When a rotor and stator are overlapped, the Back EMF is sharply changed. By detecting this point, the rotor position can be estimated. Thus SRM is driven by turn on and turn off switches at the proper position through speed calculation. The validity of proposed method is verified through simulation and experiment.

A Simplified Analysis Approach on the Rotor Position Detection Error in Sensorless Interior Permanent Magnet Brushless DC Motor Drives (센서리스 매입형 영구자석 브러시리스 직류전동기 구동장치에서 단순화된 회전자 위치검출 오차 분석 방법)

  • Lee, Kwang-Woon;Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.449-452
    • /
    • 2016
  • This paper presents a simplified analysis on the rotor position detection error in sensorless interior permanent magnet brushless DC motor (BLDCM) drives, wherein terminal voltage sensing based on the back-electromotive force (back-EMF) zero-crossing point detecting circuitry is employed. The effect of a rotor saliency on the back-EMF's zero-crossing point detection is analyzed using the extended EMF-based voltage equation of the interior permanent BLDCM in a stationary reference frame, and thus the overall analysis is considerably simplified compared to the conventional one. Simulation results are provided to verify the effectiveness of the proposed method.

Rotor Position Detection of a Toroidal Switched Reluctance Motor Using Interior Central Pole Search Coils (돌극 관통형 서치코일을 이용한 토로이달 스위치드 릴럭턴스 모터의 회전자 위치 검출)

  • Yang Hyong-Yeol;Lim Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.448-456
    • /
    • 2004
  • This paper presents a new method of detecting rotor position in Toroidal Switched Reluctance Motor (TSRM). In this paper, low cost and robust characteristics of rotor position detection method are focused in order to compensate for disadvantage of general sensors. Search coils wound through the hole of the stator poles are used for detection of the rotor position in TSRM. Rotor position detection is achieved through electromotive force patterns induced by time-varying flux linkage in the search coils and then adequate phase is excited for drive. The validity of the method is verified by experimental results.

A Study on the Sensorless Drive of BLDCM through Initial Rotor Position Detecting (초기 회전자 위치 검출을 통한 BLDCM의 센서리스 구동에 관한 연구)

  • Jang Hoon;Bae Jong-Pyo;Kim Jong-Sun;Yoo Ji-Yoon;Yang Ha-Yeong;Yeo Hyeong-Gee
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.129-132
    • /
    • 2002
  • The first purpose of this paper is to develop the sensorless drive at adjustable speed without any mechanical position or speed sensor. For this, this research analyzes terminal voltage, finds the rotor position information and makes the source of commutations of phase current. The second purpose is to propose the sensing method of initial rotor position without instantaneous rotating. Experimental results show the validity and practical use of the proposed sensing method.

  • PDF

Inductance Reasoning Method for Sensorless Control of an SRM (SRM의 센서리스 제어를 위한 인덕턴스 추론기법)

  • 안진우;박성준;김태형
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.427-434
    • /
    • 2003
  • This paper describes a new method of detecting rotor position in switched reluctance motor(SRM), Some strategies of position sensorless control methods for the motor include the measurement of phase current and applied pulse voltage in an unexcited phase. The principle of the estimation of a rotor position is based on the detection of inductance by pulse currents. This sensorless method is very simple to compute rotor position estimation and gives efficient control of drive system. Suggested method is verified by some experimental tests.