• Title/Summary/Keyword: Rotor design

Search Result 1,689, Processing Time 0.044 seconds

The development of a preliminary designing program for ORC radial inflow turbines and the design of the radial inflow turbine for the OTEC (ORC 반경류터빈의 예비설계프로그램 개발 및 OTEC용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.276-284
    • /
    • 2014
  • The purpose of this study is to establish the designing method of ORC(Organic Rankine Cycle) radial inflow turbines. RTDM(Radial Turbine Design Modeler) Ver.2.1 which is a preliminary design program of radial inflow turbines was developed to achieve this purpose. The 200kW-class radial inflow turbine for OTEC(Ocean Thermal Energy Conversion) was designed by using the RTDM Ver.2.1 and CFD(Computational Fluid Dynamics) simulation was performed to verify the accuracy of RTDM Ver.2.1. With the result of simulation, the accuracy of RTDM Ver.2.1 was almost 94.6% based on the designed total enthalpy drop of the radial inflow turbine. Strategy of adjusting the mass flow rate was adopted on this study to satisfy the requirements of its power and rotor outlet's conditions for the designed radial inflow turbine. The mass flow rate was consequently increased to 21.2 kg/s for the designed 200kW-class radial inflow turbine for OTEC, and then Total to total and Total to static efficiency are 89.8% and 85.36% respectively.

Identification of Frequency-Dependent Dynamic Characteristics of a Bump Structure for Gas-Foil Bearings via 1-DOF Shaker Tests Under Air Pressurization (가스 포일 베어링 범프 구조의 1 자유도 가진/가압 실험을 통한 주파수 의존 동특성 규명)

  • Sim, Kyuho;Park, Jisu;Lee, Sanghun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1029-1037
    • /
    • 2015
  • Recently, the importance of rotordynamic stability has been increased because of the tendency to employ ultra-high speeds in rotating machinery. In particular, the dynamic characteristics of gas bearings for high-speed rotating machinery need to be identified at various excitation frequencies to predict the rotor's behavior. In this study, we perform dynamic loading tests for gas-foil bearings (GFBs) to determine the bump foil structure and an air-film combined bump-foil structure for varying excitation frequencies. We calculate the dynamic characteristics from the measured force and displacement data. The air film is generated by a pressurized air supply. Based on the results, the stiffness coefficients of the bump structure and the air-film combined bump structure increased, while the damping coefficients decreased at increasing excitation frequencies. Further, the stiffness and damping coefficients of the air-film combined structure show lower values than those of the bump structure. Consequently, we identify the frequency-dependent dynamic characteristics of the bump structure and the effect of gas film on the dynamic characteristics of GFBs. Furthermore, to reveal the effectiveness of the proposed method, we perform experiments and discuss two methods of extracting the dynamic characteristics from the measured data.

Turbine Blading Performance Evaluation Using Geometry Scanning and Flowfield Prediction Tools

  • Zachos, Pavlos K.;Pappa, Maria;Kalfas, Anestis I.;Mansour, Gabriel;Tsiafis, Ioannis;Pilidis, Pericles;Ohyama, Hiroharu;Watanabe, Eiichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.89-96
    • /
    • 2008
  • This paper investigates the effect of blade deformation, caused by manufacturing inaccuracies, on the performance of a 2-stage axial steam turbine. A high fidelity 3D coordinate Measurement Machine has been employed to obtain the exact geometrical model of the blades. A Streamline Curvature solver was used to predict the overall performance of the turbine. During the manufacturing process of the casts and of the blades themselves, several types of errors can occur which lead to a different geometry from that envisaged by the designer. The main objective of this study is to investigate the effect of those errors on the performance of a 2-stage experimental axial steam turbine. A high fidelity measurement of the actual geometry of both stator and rotor blades has been carried out, using a 3D Coordinate Measurement Machine. The cross sections of the blades obtained by the measurement were compared with those produced by the design process to evaluate the change in blade inlet/exit angles. In addition, the geometrical deviations from the initial design have been subjected to a statistical study in order to locate the nature of the error. The actual(measured) model has been used as input into a Streamline Curvature solver to evaluate its performance. Finally, a comparison with the performance plots of the original geometry has been carried out. A measurable change of efficiency as well as in the total power delivered by the turbine was found. This suggests that the accumulated error caused during the manufacturing procedure plays a significant role in the overall performance of the machine by making it less efficient by more than 1%. Reverse engineering techniques are proposed to predict and alleviate these errors leading thereby to a final design of each stage with improved performance.

  • PDF

A Study on the Elliptical Gear Design for Oval flowmeter (오발 유량계에 사용되는 타원형 기어 설계에 관한 연구)

  • Park, Jin Joo;Lee, Eung Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1029-1033
    • /
    • 2013
  • Elliptical gear is used as a rotor of oval flowmeter. The elliptical gear can assist water flow-rate measurement by the space of the elliptical shape. Presently, elliptical gears have been processed using hob tool imported from Japan. But if it were not for the technical cooperation with Japan company, the Elliptical gears can't be processed. The purpose of this study is developing a domestic technology for elliptical gears and overcoming the dependence of foreign technical skills. It will bring the import substitution effect. In case of pressure angle $20^{\circ}$, the elliptical gears have an interference of tooth. The increase of pressure angle makes the root of a tooth thick and the top of tooth thin. By results of this study, tooth of elliptical gear was designed and verified through the 2D and 3D simulation.

High Performance Speed Control of IPMSM with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using learning mechanism-fuzzy neural network(LM-FNN) and ANN(artificial neural network) control. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility md numerical processing capability. Also, this paper proposes speed control of IPMSM using LM-FNN and estimation of speed using artificial neural network controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. 'The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Analysis results to verify the effectiveness of the new hybrid intelligent control proposed in this paper.

On discrete nonlinear self-tuning control

  • Mohler, R.-R.;Rajkumar, V.;Zakrzewski, R.-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1659-1663
    • /
    • 1991
  • A new control design methodology is presented here which is based on a nonlinear time-series reference model. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible a.c. transmission system (FACTS) with series capacitor power feedback control is studied. A bilinear auto-regressive moving average (BARMA) reference model is identified from system data and the feedback control manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index (J). A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack. These applications are typical of the numerous plants for which nonlinear adaptive control has the potential to provide significant performance improvements. For aircraft control, significant maneuverability gains can provide safer transportation under large windshear disturbances as well as tactical advantages. For FACTS, there is the potential for significant increase in admissible electric power transmission over available transmission lines along with energy conservation. Electric power systems are inherently nonlinear for significant transient variations from synchronism such as may result for large fault disturbances. In such cases, traditional linear controllers may not stabilize the swing (in rotor angle) without inefficient energy wasting strategies to shed loads, etc. Fortunately, the advent of power electronics (e.g., high-speed thyristors) admits the possibility of adaptive control by means of FACTS. Line admittance manipulation seems to be an effective means to achieve stabilization and high efficiency for such FACTS. This results in parametric (or multiplicative) control of a highly nonlinear plant.

  • PDF

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

A Study on the Blade Load Measurement of Partial-admission Turbine Cascade (충동형 터빈 캐스케이드의 깃 하중 측정에 관한 연구)

  • Lim, Dong-Hwa;Jang, Jin-Man;Lee, Eun-Seok;Kim, Jin-Han;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • An impulse turbine, which is a main component of a liquid rocket engine, needs to be a small size with light weight and generate large power. Since the impulse turbine is being operated under complicated supersonic conditions, flow analysis and performance prediction largely depend on CFD technique. In order to increase the reliability of the prediction code, however, it often requires an experimental data to compare. In this research a rotating turbine rotor with multiple blades is simulated with a two-dimensional stationary cascade to check the effect of major flow parameters. Mach number is measured at nozzle exit by using a pitot tube and the blade thrust was also measured with a load cell. The measured thrust coefficient and the power are compared well with the designed conditions, which proves the design procedures are properly taken.

Simulation for the Calculation of Switching Time when Asynchronous Motors are Starting (비동기 전동기 기동시 스위칭시간 계산에 관한 시뮬레이션)

  • Bae, Cherl-O;Vuong, Duc-Phuc
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.837-843
    • /
    • 2012
  • Asynchronous motors are widely used in many fields. The various starting methods have been developed for the asynchronous motors which have large power compared to source power. The most popular ways to start the motors are to reduce the voltage of motor's stator or change the resistance fed rotor. It is needed to the specific time to reduce the voltage and change the resistance at a specific step. We call it the switching time. It is very difficult to know the switching time exactly. It varies with different types of motors as well as load characteristics. Thus, this paper focuses on the design and development for the mathematical models of motor and load. And then it is implemented in SIMULINK in order to calculate this time. The simulation results are both compared and discussed in detail so that it can be applied for new system with various motors and loads.

Experimental Study on the Unsteady Flow Characteristics of the Counter-Rotating Axial Flow Fan (엇회전식 축류팬의 비정상 유동특성에 관한 실험적 연구)

  • Cho, Lee-Sang;Choi, Hyun-Min;Kang, Jeong-Seek;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.305-310
    • /
    • 2007
  • For the understanding of the complex flow characteristics in the counter-rotating axial flow fan, it is necessary to investigate the three-dimensional unsteady flow fields in the counter-rotating axial flow fan. This information is also essential for the prediction of the aerodynamic and acoustical characteristics of the counter-rotating axial flow fan. Experimental study on the three-dimensional unsteady flow in the counter-rotating axial flow fan is carried out at the design point(operating condition). Three-dimensional unsteady flow fields in the counter rotating axial flow fan are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. Three-dimensional unsteady flow fields in the counter-rotating axial flow such as the wake, the tip vortex and the tip leakage flow are shown the form of the velocity vectors and the velocity contours.

  • PDF