• Title/Summary/Keyword: Rotor blade

Search Result 779, Processing Time 0.021 seconds

Dynamic Characteristic Study of Hingeless Blade Stiffness Reinforcement for Bearingless Rotor Whirl Tower Test (무베어링 로터 훨타워 시험을 위한 무힌지 블레이드 강성보강에 따른 동특성 연구)

  • Kim, Taejoo;Yun, Chulyong;Kee, Youngjoong;Kim, Seung-Ho;Jung, Sungnam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • Whirl tower test is conducted basically during helicopter rotor system development process. And for whirl tower test of rotor hub system, new design blade or existing blade which is remodeled for new rotor hub system is used. Because of simple shape and efficient aerodynamic characteristic, BO-105 helicopter blade is used for helicopter rotor hub development project widely. Originally BO-105 blade is used for hingeless hub system and blade root is used to flexure. So flap stiffness and lag stiffness at blade root area is relatively low compare with airfoil area. So, in order to apply the BO-105 blade to bearingless hub, blade root area have to be reinforced. And in this process, blade root area's section property is changed. In this paper, we suggest reinforcement method of BO-105 blade root area and study dynamic characteristic of bearingless rotor system with reinforcement BO-105 blade.

Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD

  • Sengupta, Anal Ranjan;Biswas, Agnimitra;Gupta, Rajat
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2021
  • This present paper leads to investigation of blade-fluid interactions of cambered blade H-Darrieus rotor having EN0005 airfoil blades using comprehensive Computational Fluid Dynamics (CFD) analysis to understand its performance in low wind streams. For several blade azimuthal angle positions, the effects of three different low wind speeds are studied regarding their influence on the blade-fluid interactions of the EN0005 blade rotor. In the prevailing studies by various researchers, such CFD analysis of H-Darrieus rotors are very less, hence it is needed to improve their steady-state performance in low wind velocities. Such a study is also important to obtain important performance insights of such thin cambered blade rotor in its complete rotational cycle. It has been seen that the vortex generated at the suction side of the EN0005 blade rolls back to its leading edge due to the camber of the blade and thus a peak velocity occurs near to the nose position of this blade at its leading edge, which leads to peak performance of this rotor. Again, in the returning phase of the blade, a secondary recirculating vortex is generated that acts on the pressure side of EN0005 blade rotor that increases the performance of this cambered EN0005 blade rotor in its downstream position as well. Here, the aerodynamic performances have been compared considering Standard k-ε and SST k-ω models to check the better suited turbulence model for the cambered EN0005 blade H-Darrieus rotor in low tip speed ratios.

Computational Flow Analysis around Coaxial Rotor Blades with Various Ducts (덕트형상에 따른 동축반전 로터블레이드 주위의 전산유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2010
  • Regarding the aircrafts with a rotor blade system, the miniaturization of them is limited due to the rotor blade length and the tail rotor system. To miniaturize an aircraft, an equipment is required that increases thrust and also shortens the length of the rotor blade. The present study will conduct the flow analysis for miniaturizing the aircraft by applying a duct to the coaxial rotor blade system without tail rotor. First, the verification on the calculated results was conducted through the computational flow analysis on the coaxial rotor blade system without a duct. Then, the flow analysis for the coaxial rotor blade systems was performed including Ka-60 duct, Single duct, Twin duct, and Double duct, respectively. From the numerical results, the thrust coefficient appeared higher with the duct than without a duct for the coaxial rotor blade system. Especially, in the case of Double duct, the thrust was improved due to the increase of incoming flow and the extension of the wake area. These results will be used as the basic concepts for miniaturizing the aircraft with the rotor blade system. The flow analysis on the coaxial rotor blade system including the fuselage remains as a future work.

Aerodynamics Characteristics of Quad-Rotor Blade (쿼드로터 블레이드의 공력특성)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

Optimization of Blade Sweep of NASA Rotor 37 (NASA Rotor 37 익형의 스윕각 최적화)

  • Jang Choon-Man;Li Ping;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.622-629
    • /
    • 2006
  • The shape optimization of blade sweep in a transonic axial compressor rotor of NASA Rotor 37 has been performed using response surface method and the three-dimensional Wavier-Stokes analysis. Two shape variables of the rotor blade, which are used to define the rotor sweep, are introduced to increase the adiabatic efficiency of the compressor. Throughout the optimization, optimal shape having a backward sweep is obtained. Adiabatic efficiency, which is the objective function of the present optimization, is successfully increased. Separation line due to the interference between a shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. The increase in adiabatic efficiency for the optimized blade is caused by suppression of the separation due to a shock on the blade suction surface.

A study of Main Rotor Blade Tip shape and analysis of flow around Main Rotor Blade Tip (Main Rotor Blade Tip 형상 변화에 따른 유동분석)

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.382-386
    • /
    • 2013
  • 본 연구에서는 Main Rotor Blade Tip 형상 변화에 따른 후류해석을 통해 와류 생성 및 주변 유동을 분석하여 블레이드 팁 형상의 변화가 와류 간섭을 감소시키는지의 여부를 확인하였다. EDISON CFD를 이용하여 블레이드 Blade Tip 형상에 따라 유동이 어떻게 나타나며, Blade 후류의 압력과 점성의 변화를 분석하여 와류의 양상을 해석하였다. 비교 Blade 형상은 2세대 긴 직사각형 모형, KUH 수리온의 Blade, 유로콥터사의 'Blue Edge'로 비교적 최근에 개발된 대표적인 Blade Tip 형상 3개로 정하였다. 결과를 토대로 블레이드 뒷전의 와류흐름 양상을 확인하여 블레이드 와류 간섭현상의 감소를 확인하였다.

  • PDF

Rotating Frequency Analysis of a Helicopter Rotor Blade with Swpt Tips (후퇴각 날개끝이 있는 헬리콥터 로터깃의 회전주파수 해석)

  • ;Yang, Wei Dong
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2000
  • To reduce the drag rise on the advancing helicopter rotor blade tips, the tip of the blade is modified to have sweep, anhedral and pretwist. The equations of motion of rotor blade with these tip angles were derived using Hamilton principle, programmed using FORTRAN and named as ARMDAS(Advanced Rotorcraft Multidisplinary Design and Analysis System). Rotating frequency analysis of rotor blades with swept tipe was performed that is necessary in conceptual and preliminary design phases of the helicopter design. Vibration analysis of non-rotating blades was also accomplished and compared with MSC/NASTRAN resutls for the basis of comparison with the vibration test data. The rotating frequency analysis of blades with an actual rotor blade data was also performed to verify coded program and to check the possibility of a resonance of an actual rotor blade at the specific rotating speed.

  • PDF

Design and Flow Analysis on the 1kW Class Horizontal Axis Wind Turbine Rotor Blade for Use in Southwest Islands Region (서남권 도서지역에 적합한 1kW급 수평축 풍력터빈 로터 블레이드 설계 및 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Yoon, Han-Yong;Cho, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • This study is to develop a 1kW-class horizontal axis wind turbine(HAWT) rotor blade which will be applicable to relatively low wind speed regions in southwest islands in Korea. Shape design of 1kW-class small wind turbine rotor blade is carried out using a blade profile with relatively high lift to drag ratio by blade element momentum theory(BEMT). Aerodynamic analysis on the newly designed rotor blade is performed with the variation of tip speed ratio. Power coefficient and pressure coefficient of the designed rotor blade are investigated according to tip speed ratio.

Development of Mach Small-scaled Composite Blade for Helicopter Articulated Rotor System (헬리콥터 관절형 로터 시스템용 마하 축소 복합재료 블레이드 개발)

  • Kim, Deog-Kwan;Song, Keun-Woong;Kim, Joune-Ho;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.57-60
    • /
    • 2003
  • This Paper contains the development procedure of Mach small-scaled composite rotor blade for helicopter articulated rotor system. This mach small-scaled composite blade design is conducted by using CORDAS program developed by KARI. The Dynamic analysis for an articulated rotor system with this blade is conducted by using FLIGHTLAB which is commercial software for helicopter analysis. Also the optimizing procedure of iterative design was described. The designed composite blades were manufactured after establishing the effective curing method. For small-scaled rotor test, strain gauges were embedded in composite blade spar to obtain bending & torsion strain value. To verify sectional properties of a blade, the bench test is accomplished. After comparing a designed data and tested data, Dynamic Calculation was repeated using tested data. Through this research, experiences of mach small-scaled composite blade development were accumulated and will be applied to the related research field.

  • PDF

AERODYNAMIC EFFECTS OF THE TAB ON A HOVERING ROTOR BLADE (정지비행 로터 블레이드에 부착된 탭의 공기역학적 효과)

  • Kang, H.J.;Kim, D.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2013
  • Numerical simulation was performed for the rotor blade with fixed tab in hover using an unstructured mesh Navier-Stokes flow solver. The inflow and outflow boundary conditions using 1D momentum and 3D sink theory were applied to reduce computational time. Calculations were performed at several operating conditions of varying collective pitch angle and fixed tab length. The aerodynamic effect of fixed tab length was investigated for hovering efficiency, pitching moment and flapping moment of the rotor blade. The results show that it affects linearly increasing on the pitching moment of the rotor blade but does not affect on the flapping moment. The required power is less than 45kw for ground rotating test in hover. Numerical simulations also show that the vortex generate not only from the tip of the rotor blade but also from the fixed tab on the rotor blade.