• Title/Summary/Keyword: Rotor Vibration Analysis

Search Result 494, Processing Time 0.028 seconds

Characteristics Analysis of Induction Motor by Operation of Non- linear Loads under the 3-phase 4-wire grid system (3상 4선식에서 비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Wong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Moors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

Torque Ripple Minimization in Switched Reluctance Motor Drives Considering Magnetic Saturation (자기포화를 고려한 SRM의 토크리플 저감 제어)

  • Kang, Junho;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.48-54
    • /
    • 2014
  • This paper discusses study of torque ripple minimization employing an improved TDF(torque distribution function)-based instantaneous torque control to reduce acoustic noise and vibration problem of the SRM. As the flux linkage of the SRM is a nonlinear function of phase current and rotor position, design of optimal controller for the SRM is quite complicated. Hence, an accurate mathematical model considering the nonlinearity of the SRM is required. An improved TDF based torque control has been proposed in order to reduce the toque ripple at high speed operation. Dynamic simulation using Matlab/Simulink as well as Finite Element Analysis is presented. A prototype SRM for electric vehicle traction has been manufactured to validate the experimental results comparing the dynamic simulation results.

Optimum Shape Design of Spoke Type Motor and Magnetizer by Characteristic Analysis (Spoke Type 전동기 및 착자기 최적설계)

  • Kim, Young-Hyun;Lee, Jin-Kyoung;Seo, Jun;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.286-297
    • /
    • 2016
  • This study proposes criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration. The optimal design of the stator and rotor can be enhanced using both a response surface method and finite element method. In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor. Finally, this study verifies that the proposed motor can efficiently replace interior permanent magnet synchronous motor in many industries.

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependant on the Materials of the Stator (재질의 변화에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.354-356
    • /
    • 2005
  • Novel structure ultrasonic motors which have cross type stator were designed and fabricated. Driving characteristics of the motors were analyzed and measured by changing the materials of the stator. This ultrasonic motor has stator with hollowed cross bar and the stator rotate the rotor using elliptical displacement of the inside tips. This motion is generated by lateral vibration mode of cross bars. This stator was analyzed by finite element analysis and the ultrasonic motors were made by analyzed results. The larger displacements were obtained, when the Young's modulus was increased and the Poisson's ratio was decreased. The fabricated one has high speed in large Poisson's ratio and Young's modulus. And the torque was increased in high Young's modulus.

  • PDF

Core Shape Optimization for Cogging Torque Reduction of BLDC Motor (BLDC 모터의 코깅토크 저감을 위하 코어형상 최적화)

  • Han, Ki-Jin;Cho, Han-Sam;Cho, Dong-Hyeok;Cho, Hyun-Rae;Lee, Hae-Seok;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.67-69
    • /
    • 1998
  • The cogging torque in the small BLDC motors used in the DVD driving system or HDD driving system can cause some serious vibration problem. In this paper, some core shapes that reduce cogging torque are found by using reluctance network method(RNM) for magnetic field analysis and genetic algorithm(GA) for optimization. The outer rotor type BLDC motor for the DVD ROM driving system has been optimized as an sample model.

  • PDF

Design Optimization of a Traction Motor for High Speed Trains (고속전철용 견인유도전동기의 최적화 설계에 관한 연구)

  • 권병일;박승찬;김병택;곽승용;이기호;윤종학;김근웅;이상우
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.179-186
    • /
    • 1998
  • Three phase squirrel cage induction motor is generally adopted as a traction motor to drive high speed trains because of its robustness for surrounding environment and easy maintenance. In the design of traction molar, reduction of weight is very important in order to reduce kinetic energy to accelerate the vehicle. Therefore, in this paper, design variables of a preliminary designed traction motor to minimize its weight is determined using the optimization technique. Before the optimization process, rotor slot number is determined to reduce vibration and noise by the analysis of magnetic force. As a result, a design example to reduce weight by 12% than that of the preliminary designed motor is presented.

  • PDF

An Study on Pole Piece Shape for Improving Torque Ripple of Magnetic Gears (마그네틱 기어의 토크리플 개선을 위한 폴피스 형상 연구)

  • Kim, Chan-Seung;Park, Eui-Jong;Kim, Sung-Jin;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1065-1070
    • /
    • 2017
  • Magnetic gears are magnetically coupled to the input side and the output side of the rotary machine to transmit power without mechanical contact. The magnetic gear consists of an inner rotor, an outer rotor and pole pieces. Torque ripple occurs due to the difference in reluctance between the two rotors and the pole pieces during power transmission. Torque ripple is a cause of the noise and vibration of the rotary machine, so it is necessary to minimize it. In this paper, we propose a shape that cuts the corner of the pole piece and apply a fillet to reduce torque ripple. We used a two-dimensional finite element analysis method to compare and analyze the torque ripple of the magnetic gears according to the change of the fillet parameters and to find the pole piece shape with excellent torque ripple.

Development and Verification of Active Vibration Control System for Helicopter (소형민수헬기 능동진동제어시스템 개발)

  • Kim, Nam-Jo;Kwak, Dong-Il;Kang, Woo-Ram;Hwang, Yoo-Sang;Kim, Do-Hyung;Kim, Chan-Dong;Lee, Ki-Jin;So, Hee-Soup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-192
    • /
    • 2022
  • Active vibration control system(AVCS) for helicopter enables to control the vibration generated from the main rotor and has the superb vibration reduction performance with low weight compared passive vibration reduction device. In this paper, FxLMS algorithm-based vibration control software of the light civil helicopter tansmits the control command calculated using the signals of the tachometer and accelerometers to the circular force generator(CFG) is developed and verified. According to the RTCA DO-178C/DO-331, the vibration control software is developed through the model based design technique, and real-time operation performance is evaluated in PILS(processor in-the loop simulation) and HILS(hardware in-the loop simulation) environments. In particular, the reliability of the software is improved through the LDRA-based verification coverage in the PIL environments. In order to AVCS to light civil helicopter(LCH), the dynamic response characteristic model is obtained through the ground/flight tests. AVCS configuration which exhibits the optimal performance is determined using system optimization analysis and flight test and obtain STC certification.

A Research for the Noise Development of the FF 8th Speed Automatic Transmission (전륜 8속 자동변속기 소음 개발에 대한 연구)

  • Lee, Hyun Ku;Hong, Sa Man;Kim, Moo Suk;Hur, Jin Wook;Yoo, Dong Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.559-566
    • /
    • 2016
  • This study shows a development procedure and results of noise reduction for a new developed FF 8th speed automatic transmission. Based on planetary gear operating frequency analysis using PTA(planetary transmission analysis) program developed in 2012, It is expected that gear noise of the rear planetary gear set could be recognized easily in the concept design stage. Therefore, pRMC (planetary run many cases) analysis program that is developed in 2012 was applied to minimize the planetary gear noise level and noise distributions versus torque. To minimize noises coming from oil pump and final gears of a new transmission, several changes were applied, such as changing the clearance of double angular ball bearing, the oil pump rotor tooth number from 9 to 11 and the oil pump type from parachoid to megafloid and so on. Besides, stiffness values of the transmission case and the mount bracket were measured and reinforced properly. Finally, The total noise of the new FF 8th speed automatic transmission was developed successfully. Furthermore, E.O.L. testers also have been adapted to control the noise quality of automatic transmission assembly in the manufacturing factory. This paper could provide practical solutions to the automatic transmission NVH problems.

Design and Analysis of Flexbeam in SNUF Blade Equipped with Active Trailing-Edge Flap for Helicopter Vibratory Load Reduction (헬리콥터 진동 하중 저감을 위한 능동 뒷전 플랩이 장착된 SNUF 블레이드의 유연보의 설계 및 해석)

  • Im, Byeong-Uk;Eun, Won-Jong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.542-550
    • /
    • 2018
  • This paper presents design of a bearingless main rotor of SNUF (Seoul National University Flap) blade equipped with active trailing-edge flap to reduce the hub vibratory loads during helicopter forward flight. For that purpose, sectional design of the flexbeam is carried out using the thin-walled composite material rotating beam vibration analysis program (CORBA77_MEMB) in EDISON. Using the multi-body dynamics analysis program, DYMORE, blade dynamic characteristics and those of the loads control are examined using the active trailing-edge flap in terms of the flexbeam sectional design.