• Title/Summary/Keyword: Rotational sensor

Search Result 159, Processing Time 0.024 seconds

Analysis of Navigation Error According to Rotational Motions of Rotational Inertial Navigation for Designing Optimal Rotation Sequence (최적 회전 절차 설계를 위한 회전형 관성항법장치의 회전 동작별 항법 오차 분석)

  • Jae-Hyuck Cha;Chan-Gook Park;Seong-Yun Cho;Min-Su Jo;Chan-Ju Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.445-452
    • /
    • 2024
  • This paper analyzes the navigation error for each rotational motion in order to design an optimal rotation sequence, which is a key technology in the rotational inertial navigation. Rotational inertial navigation system is designed to cancel out navigation errors caused by inertial sensor errors by periodically rotating the inertial measurement unit. A properly sequenced rotational motion cancels out the maximum amount of navigation error and is known as an optimal rotation sequence. To design such an optimal turning procedure, this paper identifies the feasible rotational motions that can be implemented in a rotational inertial navigation system and analyzes the navigation error introduced by each rotational motion. In addition, by analyzing the characteristics of the navigation error generated during a rotation sequence in combination, this paper presents the conditions for designing an optimal rotation sequence.

The Six-Position Calibration Technique of Gyro Bias for Rotational Inertial Navigation System Based on Ring Laser Gyroscope (링 레이저 자이로 기반 회전형 관성항법장치를 위한 6-자세 자이로 바이어스 교정 방법)

  • Yu, Haesung;Kim, Cheon-Joong;Lee, Inseop;Oh, Ju-Hyun;Sung, Chang-Ky;Lee, Sangjeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.189-196
    • /
    • 2019
  • The inertial sensor errors in SDINS(Strapdown Inertial Navigation System) can be compensated by rotating the inertial measurement unit and it is called RINS(Rotational Inertial Navigation System). It is assumed that the error of the inertial sensor in RINS is a static bias. However, the error of the inertial sensor actually developed and produced is not a static bias due to the change of the temperature applied to the sensor and the influence of the earth's gravity acceleration. In this paper, we propose a six-position gyro bias calibration method to evaluate the gyro bias required for RINS and present the test results of applying it to a ring laser gyro inertial navigation system under development.

Effects of the Power Transmission Units on the Rotational Accuracy of A Hydrostatic Spindle (동력전달요소에 따른 유정압 주축의 회전정밀도에 관한 연구)

  • Park, C.H.;Ryu, G.W.;Jung, Y.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-68
    • /
    • 1995
  • In this study, the effects of the power transmission units on the rotational accuracy are investigated experimentally in a hydrostatic spindle. The effects of warm up time, unbalancing and the position of measuring sensor are pre-examined for the determination of measuring conditions. The misalignment of the power transmission units and the vibration excited by the fluctuation of belt are considered as the dominant parameters of error motion. The variation and scatter of run out at the range of 0 to 3,000rpm in rotational speed are appropriated for the camparison of availabilities of the transmission units to precision spin- dles.

  • PDF

Design and Evaluation of an Ultra Precision Rotary Table for Freeform Machine Tools (자유곡면가공기용 초정밀 회전테이블의 설계 및 평가)

  • Hwang, Joo-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.94-100
    • /
    • 2010
  • This paper describes the design and evaluation procedure of an ultra-precision rotary table for freeform generating machined tools. Design of the thrust and journal hydrostatic bearings and experimental evaluation of the table were performed. To get the compact size and less lost motion direct drive servomotor with ultra precision encoder. From the considered design, following performance were confirmed by experiment. The total stiffness of the prototype rotary table was 483.6 $N/{\mu}m$ and 97.6 $N/{\mu}m$ for axial and radial direction, respectively. Rotational accuracy of the table was investigated by capacitive sensor and reversal measurement technique, and 0.10 ${\mu}m$ radial direction and 0.05 ${\mu}m$ axial direction of the rotational accuracy were confirmed. The micro resolution of the table was also investigated with displacement of capacitive sensor, and $0.5/10000^{\circ}$ of micro resolution was confirmed. Index accuracy of the table was evaluated by the autocollimator and polygon mirror, and the $\pm0.39$ arcsec accuracy and $\pm0.16$ arcsec repeatability of the table were confirmed. Those are under the general requirements of ultra precision rotary tables for freeform generating machined tools.

An Algorithm of Autonomous Navigation for Mobile Robot using Vision Sensor and Ultrasonic Sensor (비전 센서와 초음파 센서를 이용한 이동 로봇의 자율 주행 알고리즘)

  • Lee, Jae-Kwang;Park, Jong-Hun;Heo, Uk-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.19-22
    • /
    • 2003
  • This paper proposes an algorithm for navigation of an autonomous mobile robot with vision sensor. For obstacle avoidance, we used a curvature trajectory method. Using this method, translational and rotational speeds are controlled independently and the mobile robot traces a smooth curvature trajectory that consists of circle trajectories to a target point. While trying to avoid obstacles, the robot fan be goal-directed using curvature trajectory.

  • PDF

Design and Kinematic Analysis of the Reticle Stage for Lithography Using VCM (VCM을 이용한 리소그래피용 레티클 스테이지의 설계 및 기구학적 해석)

  • Oh, Min-Taek;Kim, Mun-Su;Kim, Jung-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.86-93
    • /
    • 2008
  • This paper presents a design of the reticle stage for lithography using VCM(Voice Coil Motor) and kinematic analysis. The stage has three axes for X,Y,${\theta}_z$, those actuated by three VCM's individually. The reticle stage has cross coupled relations between X,Y,${\theta}_z$ axes, and the closed solution of the forward/inverse kinematics were solved to get an accurate reference position. The reticle stage for lithography was designed for reaching both high accuracy and long stroke, which was $0.1{\mu}m$ (X,Y)/ $1{\mu}rad({\theta}_z)$ accuracies and relatively long strokes about 2mm (X,Y) and 2 degrees(${\theta}_z$). Also this research presents a rotational compensation algorithm for the precision gap sensor for the stage. Simulation results show the overall performance of the whole algorithm and the improvement quantity of the rotational compensation algorithm.

Development of a Sensor Information Integrated Expert System for Optimizing Die Polishing (최적 금형연마 가공을 위한 센서 정보 통합 전문가 시스템 개발)

  • 김화영
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.128-135
    • /
    • 2000
  • This paper presents a polishing expert system integrated with sensor information which can modify the polishing sequence and conditions initially determined by the system depending on the on-site polishing status. A practical system using AE sensor to detect the on-line polishing status is developed for the rotational polishing and the smoothly curved sur-face. Database and knowledge base for polishing processes are established by using the results of experiments and also expert's experience. Evaluations are performed for a die of headlight lamp by using both the sensor integrated expert sys-tem and the expert system without sensor. The test results show that the sensor integrated expert system provides more optimal polishing conditions since the proposed system takes advantage of on-line sensor information.

  • PDF

A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor (스마트센서를 활용한 근골격계 질환 위험 평가 플랫폼)

  • Loh, Byoung Gook
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.

Active Vibration Control of a Beam using Direct Velocity Feedback (직접속도 피드백을 이용한 보의 능동진동제어)

  • 이영섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.587-592
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair, because the sensor-actuator pair has strictly positive real (SPR) property. In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB sho robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a 'skyhook' damper, but the point sensor-distributed actuator pair with DVFB acts as a 'skyhook' rotational dmaper pair.ational dmaper pair.

  • PDF