• Title/Summary/Keyword: Rotational displacement

Search Result 253, Processing Time 0.029 seconds

Exact solutions of free vibration of rotating multilayered FGM cylinders

  • Wu, Chih-Ping;Li, Hao-Yuan
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.105-125
    • /
    • 2012
  • A modified Pagano method is developed for the three-dimensional (3D) free vibration analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow cylinders with a constant rotational speed with respect to the meridional direction of the cylinders. The material properties of each FGM layer constituting the cylinders are regarded as heterogeneous through the thickness coordinate, and then specified to obey a power-law distribution of the volume fractions of the constituents, and the effects of centrifugal and Coriolis accelerations, as well as the initial hoop stress due to rotation, are considered. The Pagano method, which was developed for the static and dynamic analyses of multilayered composite plates, is modified in that a displacement-based formulation is replaced by a mixed formulation, the complex-valued solutions of the system equations are transferred to the real-valued solutions, a successive approximation method is adopted to extend its application to FGM cylinders, and a propagator matrix method is developed to reduce the time needed for its implementation. These modifications make the Pagano method feasible for multilayered FGM cylinders, and the computation in the implementation is independent of the total number of the layers, thus becoming less time-consuming than usual.

Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers

  • 이승구;이송희
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.897-904
    • /
    • 1999
  • We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic properties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func-tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liquid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re-laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increases. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases.

Molecular Dynamics Simulation Studies of Zeolite A. Ⅵ. Vibrational Motion of Non-Rigid Zeolite-A Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.422-428
    • /
    • 1998
  • In the present paper, we report a molecular dynamics (MD) simulation of non-rigid zeolite-A framework only as the base case for a consistent study of the role of intraframework interaction on several zeolite-A systems using the same technique in our previous studies of rigid zeolite-A frameworks. Usual bond stretching, bond angle bending, torsional rotational, and non-bonded Lennard-Jones and electrostatic interactions are considered as intraframework interaction potentials. The comparison of experimental and calculated structural parameters confirms the validity of our MD simulation for zeolite-A framework. The radial distribution functions of non-rigid zeolite-A framework atoms characterize the vibrational motion of the framework atoms. Mean square displacements are all periodic with a short period of 0.08 ps and a slow change in the amplitude of the vibration with a long period of 0.53 ps. The displacement auto-correlation (DAC) and neighbor-correlation (DNC) functions describe the up-and-down motion of the framework atoms from the center of α-cage and the back-and-forth motion on each ring window from the center of each window. The DAC and DNC functions of the framework atoms from the center of α-cage at the 8-ring windows have the same period of the up-and-down motion, but those functions from the center of 8-ring window at the 8-ring windows are of different periods of the back-and-forth motion.

Capabilities of 1D CUF-based models to analyse metallic/composite rotors

  • Filippi, Matteo;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.

Analysis of Long-term Behavior of Bucket Foundation Using Numerical Model (수치모델을 이용한 버킷기초의 장기거동 분석)

  • Park, Jeongseon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.31-36
    • /
    • 2021
  • Estimation of accumulated rotational angles and settlements are critical in design of wind turbine foundation. However, there have been few exploring the response of bucket foundation to long-term cyclic loading. We performed a series of three-dimensional finite element analyses of bucket foundations installed in sands. An empirical formulation which captures the stiffness degradation observed in cyclic triaxial tests implemented into the finite element analysis in the form of a user subroutine. Using the stiffness degradation model the accumulated rotation and displacement of bucket foundation were calculated. Additionally, important factors affecting the response under cyclic loading were assessed.

Critical buckling moment of functionally graded tapered mono-symmetric I-beam

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.599-614
    • /
    • 2021
  • This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.

Innovative displacement-based beam-column element with shear deformation and imperfection

  • Tang, Yi-Qun;Ding, Yue-Yang;Liu, Yao-Peng;Chan, Siu-Lai;Du, Er-Feng
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • The pointwise equilibrium polynomial (PEP) element considering local second-order effect has been widely used in direct analysis of many practical engineering structures. However, it was derived according to Euler-Bernoulli beam theory and therefore it cannot consider shear deformation, which may lead to inaccurate prediction for deep beams. In this paper, a novel beam-column element based on Timoshenko beam theory is proposed to overcome the drawback of PEP element. A fifth-order polynomial is adopted for the lateral deflection of the proposed element, while a quadric shear strain field based on equilibrium equation is assumed for transverse shear deformation. Further, an additional quadric function is adopted in this new element to account for member initial geometrical imperfection. In conjunction with a reliable and effective three-dimensional (3D) co-rotational technique, the proposed element can consider both member initial imperfection and transverse shear deformation for second-order direct analysis of frame structures. Some benchmark problems are provided to demonstrate the accuracy and high performance of the proposed element. The significant adverse influence on structural behaviors due to shear deformation and initial imperfection is also discussed.

Crabbing Motion Testing of Waterjet-Powered Ships Using Stern Thrusters

  • Joopil Lee;Seung-Ho Ham
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.10-17
    • /
    • 2024
  • This study assessed the potential for crabbing motion in waterjet ships by exclusively employing stern thrusters. The theoretical considerations were validated through practical sea trials on the naval vessel PKG (Patrol Killer Guided missile) equipped with three stern thrusters. The control forces were calculated using the force equilibrium equation. The results showed that the hull exhibited rotations and lateral movements under wind influence. The port tail exhibited a leftward turning tendency due to the wind. This phenomenon arises from the dominance of the rotational force generated by the stern thruster over the lateral force exerted by the hull, making it challenging to maintain force equilibrium. In the sea trial, the hull rotated by 10° and moved 10.8 m laterally, with a longitudinal movement of 0.26 m. Remarkably, the lateral movement surpassed the longitudinal displacement, indicating the success of the trial. The substantial lateral travel distance provided tangible evidence that the crabbing motion of the ship is achievable using only stern thrusters. This study contributes valuable insights into enhancing the maneuverability of waterjet ships, offering practical applications for naval operations and maritime activities.

Performance of plastic hinges in FRP-strengthened compressive steel tubes for different strain-hardening response

  • Ali Reza Nazari;Farid Taheri
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.301-313
    • /
    • 2024
  • Plastic buckling of tubular columns has been attributed to rotational instability of plastic hinges. The present study aimed to characterize the plastic hinges for two different grades of strain-hardening, examined in mild-steel (MS) and stainless-teel (SS) tubes with un-strengthened and strengthened conditions. At the primary stage, the formerly tested experimental specimens were simulated using full-scale FE models considering nonlinear response of the materials, then to estimate the characteristics of the plastic hinges, a meso model was developed from the critical region of the tubes and the moment-rotation diagrams were depicted under pure bending conditions. By comparison of the relative rotation diagram obtained by the full-scale models with the critical rotation under pure bending, the length and critical rotation of the plastic hinges under eccentric axial load were estimated. The stress and displacement diagrams indicated the mechanism of higher energy absorption in the strengthened tubes, compared to unstrengthened specimens, due to establishment of stable wrinkles along the tubes. The meso model showed that by increasing the critical rotation in the strengthened MS tube equal to 1450%, the energy absorption of the tube has been enhanced to 2100%, prior to collapse.

Morphologic and positional assessment of temporomandibular joint disk in facial asymmetric patients by magnetic resonance imaging (자기 공명 영상을 이용한 안면비대칭환자의 측두하악관절원반의 형태와 위치에 관한 연구)

  • Zou, Bingshuang;Kim, Tae-Woo;Choi, Soon-Chul
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.398-407
    • /
    • 2005
  • The present study was conducted to examine the morphometrics and function of the disk on both sides among patients with facial asymmetry (FA) and to elucidate plausible correlations between internal derangement (ID) and FA. The sample was composed of 10 males and 27 females with FA. The disk status of all subjects was evaluated by bilateral high resolution magnetic resonance scans in the sagittal (closed and open) and coronal (closed) planes. Five types of disk displacement were identified accordingly. The disk function was diagnosed as normal disk function, disk displacement with reduction, and disk displacement without reduction. The disk shape on sagittal MRI in closed position was classified as bi-concave, biplanar, funnel/hemiconvex, and deformed. The disk position, translation and rotation were also measured. The difference between the shifted side and non-shifted side was analyzed by statistical analysis. Approximately $70\%$ of the patients in the present study showed unilateral or bilateral ID. It was found that anterior disk displacements (ADD), especially rotational ADD, occurred more frequently in the shifted side, while normal disk position was observed mainly in the non-shifted side (p<0.01). The disk of the shifted side showed significantly deformed configuration and inferior-anterior disk position. However, the disk of the non-deviated side showed hyper-mobility during jaw opening movement. These results demonstrate that in FA patients, the disks status of the shifted side is different from that of the non-shifted side, a phenomenon that could be correlated to facial asymmetry.