• Title/Summary/Keyword: Rotational Viscosity

Search Result 107, Processing Time 0.036 seconds

Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometer and a Vibrational Viscometer (회전형 레오미터와 진동형 점도계를 이용한 세라믹 슬러리의 점도 비교)

  • Ji, Hye;Lim, Hyung Mi;Chang, Young-Wook;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.542-548
    • /
    • 2012
  • The viscosity of a ceramic slurry depends on the slurry concentration, particle shape and size, hydrodynamic interactions, temperature, shear rate, pre-treatment condition and the method of measurement with the selected equipment. Representative ceramic slurries with low to high viscosity levels are selected from colloidal silica, barium titanate slurry and glass frit paste. Rotational rheometers and vibrational viscometers are used to compare the measured viscosity for various ceramic slurries. The rotational rheometer measured the viscosity according to the change of the shear rate or the rotational speed. On the other hand, the vibrational viscometer measured one point of the viscosity in a fixed vibrational mode. The rotational rheometer allows the measurement of the viscosity of a ceramic paste with a viscosity higher than 100,000 cP, while the vibrational viscometer provides an easy and quick method to measure the viscosity without deformation of the ceramic slurry due to the measurement method. It is necessary to select suitable equipment with which to measure the viscosity depending on the purpose of the measurement.

A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle (고속주축의 회전정밀도 성능평가에 관한 연구)

  • 김종관;이중기
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1697-1704
    • /
    • 2007
  • We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.

Rotational viscosity calculation method for liquid crystal mixture using molecular dynamics

  • Kim, J.S.;Jamil, M.;Jung, J.E.;Jang, J.E.;Lee, J.W.;Ahmad, F.;Woo, M.K.;Kwak, J.Y.;Jeon, Y.J.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.135-139
    • /
    • 2011
  • This paper presents the directly obtained rotational viscosity values of E7, which includes pentylcyanobiphenol, heptylcyanobiphenol, 4-cyano-4'-n-octyloxy-1,1'-biphenyl, and 4-cyano-4"-n-pentyl-1,1',1"-terphenyl, at various tempe using molecular dynamics computer simulation. The director mean squared displacement was achieved from the squared displacement of the mean director using the concept of the mean director of various nematic liquid crystals. The calculated values were compared with the experiment results that predicted a good agreement. Additional points that must be considered for further study are also discussed.

A Molecular Dynamics Computer Simulation Method for the Calculation of Rotational Viscosity of Liquid Crystal Mixture

  • Kim, Jin-Soo;Ahmad, Farzana;Muhammad, Jamil;Park, Sang-Woo;Lee, Jin-Woo;Yun, Hee-Young;Jung, Jae-Eun;Jang, Jae-Eun;Jeon, Young-Jae;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.607-609
    • /
    • 2009
  • We present a Brownian molecular dynamics computer simulation method for calculating the rotational viscosity of the liquid crystal mixture comprising pentylcyanobiphenol (5CB) and decylcyanobiphenol (10CB). Mean director of the ensemble has been used as a nematic director. Results show a good agreement with experimental ones [Sudeshna DasGupta et al., Physics Letters A 306(2003)235-242].

  • PDF

A Study on the Thermohydrodynamic characteristics of Journal Bearing (저어널 베어링의 열류체역학적 특성에 대한 연구)

  • 김용섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.59-70
    • /
    • 1991
  • Rupture of lubricant film, thermal characteristics, and variation of viscosity are very important factors to evaluate the performance of journal bearing. Variation of external conditions, load or rotational speed, largely influence these facters. For example, if rotational speed increases lubricant bulk temperature increases and viscosity drops. In this paper the effect of rotational speed variation on the characteristics of lubricant film in a journal bearing is investigated by experiment and theoretical analysis. It has been measured number of lubricant film rupture and lubricant bulk temperature form journal bearing which have been established at the various operating speed of shaft. The range of speed variation is from 900rpm to 2100rpm. Theoretical analysis has been carried out for rupture of lubricant film and thermal characteristics, and these results are compared with experimental results.

  • PDF

Study on the pre-tilt level and uniformity of low rotational viscosity LC for fast response time

  • Lee, D.J.;Hwang, J.I.;Ko, T.W.;Choi, H.C.;Lee, S.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.457-459
    • /
    • 2005
  • Low viscosity LCs have been developed for fast response time improvement of the TFT-LCD Monitors based on TN mode. This low viscosity characteristic s cause the pretilt angle to be changed and the uniformity to degrade. We have studied on the pretilt angle effect by the various components used for low viscosity LCs. We prepared the panels by using these various components and measured pretilt angle for this research. As a result of this research, we have found out that each low viscosity component has the different pretilt angle level and uniformity. For good display quality, it is important to keep the stable pretilt angle. The low viscosity LCs with this stable pretilt angle make it possible to prepare the high performance TFT-LCD Monitor with both fast response time characteristics and good display quality

  • PDF

Effect of Zeta-Potential on the Viscosity of Clay-Water Suspension

  • Lee, Young-Seek;Ree, Jong-Baik;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.3
    • /
    • pp.83-88
    • /
    • 1982
  • Viscosity and zeta-potential of 11.0 wt. % aqueous bentonite suspension containing various electrolytes and hydrogen-ion concentration were measured by using a Couette type automatic rotational viscometer and Zeta Meter, respectively. The effects of pH and elcctrolytes on the rheological properties of the suspension were investigated. A system, which has a large zeta-potcntial, has a small intrinsic relaxation time ${\beta}$ and a small intrinsic shear modulus $1/{\alpha}$ in the Ree-Eyring generalized viscosity equation, i.e., such a system has a small viscosity value, since ${\eta}={\beta}/{\alpha}$. In general, a stable suspension system has large zeta-potential. The stability condition of clay-water suspension can be estimated by viscometric method since stable suspension generally has small viscosity. The correlation between the stability, viscosity and zeta-potential has been explained by the Ree-Eyring theory of viscous flow.

Evaluation of Apparent Viscosity Properties for Electro-Rheological Fluid (ER유체의 겉보기 점도특성 평가에 관한 연구)

  • ;Morishita, Shin
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.42-48
    • /
    • 1998
  • Electro-Rheological (ER) fluid is a class of functional fluid whose apparent viscosity can be varied by the applied electric field strength. The ER fluid is classified into two types; one is a dispersive fluid and the other is a homogeneous. Dispersive ER fluid is a colloidal suspension of fine semiconducting particles in a dielectric liquid and liquid crystal (LC) is classed as homogeneous type ER fluid. LC has been originally developed for some electronic display devices. Various mechanical components applying ER fluid have been developed, and the their performance typically depends on the characteristics of ER fluid which have generally been evaluated by a rotational viscometer. However, the ER fluid introduced into various mechanical components undergoes not only simple shear flow but press flow or oscillating flow. For the evaluation of ER fluid, the authors developed an reciprocating type viscometer. The amplitude is controlled on 5 mm at the frequency from 50 to 1000 Hz. In the present paper, the performance of several types of ER fluid is evaluated by the reciprocating type viscometer and compared with those evaluated by a rotational viscometer.