• Title/Summary/Keyword: Rotational Spring

Search Result 213, Processing Time 0.025 seconds

Analytical Model of Beam-Column Joint for Inelastic Behavior Under Various Loading History (철근콘크리트 보-기둥 접합부 해석모델)

  • 유영찬;서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.120-130
    • /
    • 1994
  • The purpose of this study is to propose the analytical model for the hysteretic behavior of Reinforced Concrete bearn-column joints under various loading history. Discrete line elernents , YVith inelastic rotational spring was adopted to consider the movement of plastic hinging zone influenced by the details of longitudinal reinforcements. Also hysteretic model was constructed by excluding such variables which can not be utilized in dynamic analysis of Reinforced Concrete. structure that it will be adoptable in two-dimensional inelastic frame ardysis with 6-DOF. From the analysis of previous test results, it was found that stiffness deterioration caused by inelastic hysteretic loadings can be predicted by the functron of basic pinching coefficients, ductility ratio.and yield strength ratio of members. Strength degradation coefficients were newly proposed to explain the difference of inelastic behavior of members caused by spacing ratio of transverse steel and sectlon aspect ratio. The energy dissipation capacities calculated using the analytical model proposed in thls paper show a good agreements w~lh test results by an error of 10~20%.

Behavior of semi-rigid steel frames under near- and far-field earthquakes

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.625-641
    • /
    • 2020
  • The realistic modeling of the beam-column semi-rigid connection in steel frames attracted the attention of many researchers in the past for the seismic analysis of semi-rigid frames. Comparatively less studies have been made to investigate the behavior of steel frames with semi-rigid connections under different types of earthquake. Herein, the seismic behavior of semi-rigid steel frames is investigated under both far and near-field earthquakes. The semi-rigid connection is modeled by the multilinear plastic link element consisting of rotational springs. The kinematic hysteresis model is used to define the dynamic behavior of the rotational spring, describing the nonlinearity of the semi-rigid connection as defined in SAP2000. The nonlinear time history analysis (NTHA) is performed to obtain response time histories of the frame under scaled earthquakes at three PGA levels denoting the low, medium and high-level earthquakes. The other important parameters varied are the stiffness and strength parameters of the connections, defining the degree of semi-rigidity. For studying the behavior of the semi-rigid frame, a large number of seismic demand parameters are considered. The benchmark for comparison is taken as those of the corresponding rigid frame. Two different frames, namely, a five-story frame and a ten-story frame are considered as the numerical examples. It is shown that semi-rigid frames prove to be effective and beneficial in resisting the seismic forces for near-field earthquakes (PGA ≈ 0.2g), especially in reducing the base shear to a considerable extent for the moderate level of earthquake. Further, the semi-rigid frame with a relatively weaker beam and less connection stiffness may withstand a moderately strong earthquake without having much damage in the beams.

Shear strength analyses of internal diaphragm connections to CFT columns

  • Kang, Liping;Leon, Roberto T.;Lu, Xilin
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1083-1101
    • /
    • 2015
  • Previous theoretical equations for the shear capacity of steel beam to concrete filled steel tube (CFT) column connections vary in the assumptions for the shear deformation mechanisms and adopt different equations for calculating shear strength of each component (steel tube webs, steel tube flanges, diaphragms, and concrete etc.); thus result in different equations for calculating shear strength of the joint. Besides, shear force-deformation relations of the joint, needed for estimating building drift, are not well developed at the present. This paper compares previously proposed equations for joint shear capacity, discusses the shear deformation mechanism of the joint, and suggests recommendations for obtaining more accurate predictions. Finite element analyses of internal diaphragm connections to CFT columns were carried out in ABAQUS. ABAQUS results and theoretical estimations of the shear capacities were then used to calibrate rotational springs in joint elements in OpenSEES simulating the shear deformation behavior of the joint. The ABAQUS and OpenSEES results were validated with experimental results available. Results show that: (1) shear deformation of the steel tube dominates the deformation of the joint; while the thickness of the diaphragms has a negligible effect; (2) in OpenSEES simulation, the joint behavior is highly dependent on the yielding strength given to the rotational spring; and (3) axial force ratio has a significant effect on the joint deformation of the specimen analyzed. Finally, modified joint shear force-deformation relations are proposed based on previous theory.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Stiffness Modeling of a Low-DOF Parallel Robot (저자유도 병렬형 로봇의 강성 모델링)

  • Kim, Han-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • This paper presents a stiffness modeling of a low-DOF parallel robot, which takes into account of elastic deformations of joints and links, A low-DOF parallel robot is defined as a spatial parallel robot which has less than six degrees of freedom. Differently from serial chains in a full 6-DOF parallel robot, some of those in a low-DOF parallel robot may be subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each serial chain can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness of an F-DOF parallel robot can be modeled such that the moving platform is supported by 6 springs related to the reciprocal screws of actuations (F) and constraints (6-F). A general $6{\times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints, The compliance of each spring can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; a link is modeled as an Euler beam and the compliance matrix of rotational or prismatic joint is modeled as a $6{\times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is infinite. By summing joint and link compliance matrices with respect to a reference frame and applying unit reciprocal screw to the resulting compliance matrix of a serial chain, the compliance of a spring is determined by the resulting infinitesimal displacement. In order to illustrate this methodology, the stiffness of a Tricept parallel robot has been analyzed. Finally, a numerical example of the optimal design to maximize stiffness in a specified box-shape workspace is presented.

Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams

  • Wang, Tong;He, Tao;Li, Hongjing
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1139-1153
    • /
    • 2016
  • Elastic constraints are usually simplified as "spring forces" exerted on beam ends without considering the "spring deformation". The partial differential equation governing the free vibrations of a cantilever Bernoulli-Euler beam considering the deformation of elastic constraints is firstly established, and is nondimensionalized to obtain two dimensionless factors, $k_v$ and $k_r$, describing the effects of elastically vertical and rotational end constraints, respectively. Then the frequency equation for the above Bernoulli-Euler beam model is derived using the method of separation of variables. A numerical analysis method is proposed to solve the transcendental frequency equation for the continuous change of the frequency with $k_v$ and $k_r$. Then the mode shape functions are given. Finally, effects of $k_v$ and $k_r$ on free vibration characteristics of the beam with different slenderness ratios are calculated and analyzed. The results indicate that the effects of $k_v$ are larger on higher-order free vibration characteristics than on lower-order ones, and the impact strength decreases with slenderness ratio. Under a relatively larger slenderness ratio, the effects of $k_v$ can be neglected for the fundamental frequency characteristics, while cannot for higher-order ones. However, the effects of $k_r$ are large on both higher- and lower-order free vibration characteristics, and cannot be neglected no matter the slenderness ratio is large or small.

Design of a 50kW Class Rotating Body Type Highly Efficient Wave Energy Converter (50kW급 가동물체형 고효율 파력발전시스템 설계)

  • Cho, Byung-Hak;Yang, Dong-Soon;Park, Shin-Yeol;Choi, Kyung-Shik;Park, Byung-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2011
  • A 50 kW class rotating body type wave energy converter consisted of two floating bodies and a PTO (Power Takeoff) unit is studied. As an wave energy extractor, the body is designed to have a VLCO (Variable Liquid-Column Oscillator) having a liquid filled U-tube with air chambers. Owing to the oscillation of the liquid in the U-tube caused by the air spring effect of the air chambers, the amplitude of response of the VLCO becomes significantly amplified for a target wave period. The PTO converts the rotational moment introduced from the relative motion of the hinged bodies to an hydraulic power by means of a cylinder. A high pressure accumulator, hydraulic motor and a generator are equipped in the PTO to convert the hydraulic power to electric power. A control law for adjusting the oscillation period of the VLCO is proposed for the efficient operation of the VLCO with various wave conditions. It is found that the effect of the air spring has an important role to play in making the oscillation of the VLCO match with the ocean wave. In this way, the wave energy converter equipped with the VLCO provides the most effective mode for extracting energy from the ocean wave.

Nonlinear Dynamic Behaviors of Offshore Guyed Towers (해양구조물 Guyed Tower의 비선형 동적거동)

  • Park, Woo-Sun;Pyen, Chong-Kun;Park, Young-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.126-136
    • /
    • 1991
  • This study is concerned with the nonlinear dynamic behaviors of guyed towers for wave loadings. In order to analyze the nonlinear responses of guyed towers efficiently, the main tower is modeled as an equivalent stick, the guyline system is idealized as a spring with nonlinear stiffness in the horizontal direction. and the pile foundation system is represented as a linear spring in the rotational direction. The wave forces on the main tower are evaluated by using Morison's equation. In order to consider adequately the nonlinearities of the guying system and drag forces due to fluid viscosity. the analyses are performed in the time domain. The mode superposition method is adopted for solving the nonlinear equation of motion efficiently. which is based on the Newmark integration scheme. Numerical analyses are carried out to investigate the sensitivity of two major design parameters for guyed towers. i.e., the clump weight conditions and the base renditions of the tower.

  • PDF

Dynamic Analysis of the Multi-Span Beam on Elastic Foundation Part two : Dynamic Response for the Moving Loads (탄성지반 위에 놓여있는 다지지 보의 동적해석 제2보 : 움직이는 하중에 대한 동적응답)

  • K.J. Choi;Y.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.92-98
    • /
    • 1991
  • The structures such as railway bridges can be modelled as the multi-span beam on the elastic foundation. These structures are usually subject to the moving load, which has a great effect on dynamic stresses and can cause severe motions, especially at high velocities. In this paper, the dynamic responses of the multi-span beam on the elastic foundation were obtained by using the Galerkin's method and the numerical time integration technique. As trial functions, the same orthogonal polynomial functions obtained in part 1, were used. From the numerical results, it was found that the one term expansion of the assumed solution usually leads to the accurate solutions. However, in the case that the stiffness of the transnational spring is very high or the rotational spring is placed where the slope of the first mode is zero, the higher modes must be included to obtain the accurate solutions.

  • PDF

An inverse approach for the calculation of flexibility coefficient of open-side cracks in beam type structures

  • Fallah, N.;Mousavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.285-297
    • /
    • 2012
  • An inverse approach is presented for calculating the flexibility coefficient of open-side cracks in the cross sectional of beams. The cracked cross section is treated as a massless rotational spring which connects two segments of the beam. Based on the Euler-Bernoulli beam theory, the differential equation governing the forced vibration of each segment of the beam is written. By using a mathematical manipulation the time dependent differential equations are transformed into the static substitutes. The crack characteristics are then introduced to the solution of the differential equations via the boundary conditions. By having the time history of transverse response of an arbitrary location along the beam, the flexibility coefficient of crack is calculated. The method is applied for some cracked beams with solid rectangular cross sections and the results obtained are compared with the available data in literature. The comparison indicates that the predictions of the proposed method are in good agreement with the reported data. The procedure is quite general so as to it can be applicable for both single-side crack and double-side crack analogously. Hence, it is also applied for some test beams with double-side cracks.