• 제목/요약/키워드: Rotational Shaft

Search Result 160, Processing Time 0.022 seconds

Vibration Analysis of the Shaft-duplicate Disk System (축-이중 원판계의 진동해석)

  • Chun, Sang-Bok;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.896-906
    • /
    • 1997
  • The effect of duplicate flexible disks on the vibrational modes of a flexible rotor system is investigated by using an anlytical method based on the assumed modes method. The rotor model to be analyzed consists of duplicate disks on a flexible shaft. In modeling the system, centrifugal stiffening and disk flexibility effects are taken into account. To demonstrate the effectiveness of the method, a hard disk drive spindle system commonly used in personal computers and a simple flexible rotor system with two disks are selected as examples. In particular, the dynamic coupling between the vibrational modes of the shaft and the duplicate disks is investigated with the shaft rotational speed varied.

Effects of Stagger and Pretwist Angles on the Vibration of Flexible Shaft-Bladed Disk Systems (탄성 축-익 붙임 원판 계의 진동에 있어서 엇각 및 비틀림각의 영향)

  • 전상복;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.101-109
    • /
    • 1997
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the pretwist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and pretwist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction (자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구)

  • 허형석;박경석;이기수;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

Analysis on the Vibration Characteristics of Reduction Gear Units for High-speed Trains (고속철도차량 감속구동장치 진동특성 분석)

  • Moon, Kyung Ho;Lee, Dong-Hyong;Kim, Jae Chul;Ji, Hae Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.694-701
    • /
    • 2013
  • The gear-reduction units of Korean high-speed trains consist of a motor reduction unit, an axle gear box reduction unit, and a tripod joint shaft. A reduction gear unit is a gearbox used to reduce the rotational speed of the input shaft to a slower rotational speed on the output shaft. This reduction in output speed helps to increase torque. Defective reduction gear units in high-speed trains are caused by damage to the gear or by gear fatigue. To diagnose potential problems, it is important to know the vibration characteristics of the reduction gear units. In this study, we analyzed the vibration characteristics of reduction gears under various conditions. The test setup included a full-scale test rig to evaluate reduction gear under both normal and extreme operating conditions.

Effects on the Rotational Error Motion of Air Bearing Spindle in High Speed Milling (공기베어링주축의 고속밀링에서 최전오차의 영향)

  • 안선일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.227-230
    • /
    • 1999
  • In this paper, the machining characteristics of high speed ball end milling affected by the rotational error of high speed spindle using air bearing are investigated. The error motions of a spindle have generally influenced on the surface roughness, the form accuracy, the tool life, etc. in end milling. Experiments are carried out over a wide range of rotational speeds(10,000-50,000rpm). The rotational errors of the spindle are measured by the gap sensor mounted on the spindle shaft at various cutting speeds. The relations between the surface roughness and the spindle error motion are presented. Results show that the rotational accuracy of the spindle directly affects the surface roughness of the machined surface.

  • PDF

Accuracy Evaluation of a Non-Contact Rotational Torque Measurement System by Using Telemeter (원격전송장치를 이용한 비접촉식 회전 토크 측정장치의 정확도 평가)

  • Kim, G.S.;Joo, J.W.;Kwon, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • This paper presents manufacturing and evaluation of a non-contact rotational torque measurement system which consists of torque cell, telemeter system, transmitter and receiver coil, transmitter, receiver and telemeter indicator. Static calibration test results show that the system has a maximum uncertaintry of 05% or less. A standar calibration system for rotational torque is used to evaluate the measurement system, As a result, the maximum uncertainty for measuring rotational torque by this system is 2% or less. We may conclude that the measurement system is sufficient to measure rotational torque of shaft in industry.

  • PDF

Analysis of shaft torsion of a DFIG for a wind farm collector system fault (풍력발전단지 집합 시스템 사고 시 DFIG의 Shaft Torsion 분석)

  • Yoon, Eui-Sang;Lee, Jin-Shik;Lee, Young-Gui;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • This paper analyzes the shaft torsion of a doubly-fed induction generator (DFIG) for a wind farm collector system fault. When a fault occurs, the active power of the DFIG cannot be transmitted to the grid and thus accelerates the rotation of both the blade and the rotor. Due to the different inertia of these, the angle of deviation fluctuates and the shaft torsion is occurred. This becomes much severe when the rotational speed of the blade exceeds a threshold, which activating the pitch control to reduce the mechanical power. The torque, which can be sixty times larger than that in the steady state, may destroy the shaft. The shaft torsion phenomena are simulated using the EMTP-RV simulator. The results indicate that when a wind farm collector system fault occurs, a severe shaft torsion is occurred due to the activation of the pitch control.

  • PDF

Surface Wear Monitoring with a Non-Vibrating Capacitance Probe

  • Zanoria, E.S.;Hamall, K.;Danyluk, S.;Zharin, A.L.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.40-46
    • /
    • 1995
  • This study concerns the design and development of the non-vibrating capacitance probe which could be used as a non-contact sensor for tribological wear. This device detects surface charge through temporal variation in the work function of a material. Experiments are performed to demonstrate the operation of the probe on a roating aluminum shaft. The reference electrode of the probe, made of lead, is placed adjacent (< 1.25-mm distance) to the shaft. Both surfaces which are electrically connected, form a capacitor. An artificial spatial variation in the work function is imposed on the shaft surface by coating a segment along the shaft circumference with a colloidal silver paint. As the shaft rotates, the reference electode senses changing contact potential difference with the shaft surface, owing to compositional variation. Temporal variation in the contact potential difference induces a current through the electrical connection. This current is amplified and converted to a voltage signal by an electoronic circuit with an operational amplifier. The magnitude of the signal decreases asymptotically with the electrode-shaft distance and increases linearly with the rotational frequency. These results are consistent with the theoretical model. Potential applications of the probe on wear monitoring are proposed.

Dynamic Characteristics of the Reciprocating Cutter-bar of Combine Harvester (콤바인 예취장치의(刈取裝置) 절단현상(切斷現象) 및 동적특성(動的特性)에 관한 연구(硏究)(II) -이중형(二重型) 예취장치의(刈取裝置)의 동적특성(動的特性)-)

  • Kwag, B.C.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.175-184
    • /
    • 1994
  • This study was conducted to investigate experimentally the basic characteristics of the torque of the cutterbar driving shaft as the double-knife was used instead of the conventional standard single-knife type. A new design for inclined setting of the cutterbar relative to the direction perpendicular to combine harvester movement was investigated to test a possible reduction of concentrated load caused by the simultaneous cutting of many rows. It was evaluated that the maximum torque and mean total power of the driving shaft due to the cutting resistance of the rice straw were largely depended upon the rotational shaft-speed and straw feeding rate, but were resepectively 1.1~2.3 and 1.15~1.34 times higher compared to those while idling. It was also proved that the inclined setting of the cutterbar could save a considerable amount of energy required for its driving shaft.

  • PDF

Rotational Accuracy Measurement of Scroll Compressor with D-type Sectional Shaft

  • Park, Sang-Shin;Kim, Gyu-Ha;Lee, Jin-Kab
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.125-127
    • /
    • 2002
  • This paper presents the measurement process of the rotational accuracy and the comparison with the theoretical results in the main bearing of scroll compressor. The main bearing is cylindrical oil proceeding bearing, but there are straightly cut used for oil supply. Therefore the roundness error is not a negligible quantity compared with the rotational accuracy. For this reason, three-point method is used in the experiment. The result of three-point method coincides with the theoretical value. So if the theory in this paper is used to the bearing design of scroll compressor, the efforts for testing and designing can be reduced.

  • PDF