• 제목/요약/키워드: Rotational Motion

검색결과 604건 처리시간 0.027초

모터 제어 입력 제한 조건이 고려된 차륜 이동 로봇을 위한 효율적인 최소 시간 코너링(Cornering) 주행 계획 (Efficient Minimum-Time Cornering Motion Planning for Differential-Driven Wheeled Mobile Robots with Motor Control Input Constraint)

  • 김재성;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.56-64
    • /
    • 2013
  • We propose an efficient minimum-time cornering motion planning algorithms for differential-driven wheeled mobile robots with motor control input constraint, under piecewise constant control input sections. First, we established mobile robot's kinematics and dynamics including motors, divided the cornering trajectory for collision-free into one translational section, followed by one rotational section with angular acceleration, and finally the other rotational section with angular deceleration. We constructed an efficient motion planning algorithm satisfying the bang-bang principle. Various simulations and experiments reveal the performance of the proposed algorithm.

크랙과 집중질량을 갖는 회전 외팔보의 진동 해석 (Vibration Analysis of a Cracked Beam with a Concentrated Mass Undergoing Rotational Motion)

  • 김민권;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.354-359
    • /
    • 2008
  • Modal characteristics of a cracked beam with a concentrated mass undergoing rotational motion are investigated in this paper. Hybrid deformation variables are employed to derive the equations of motion of a rotating cantilever beam. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack and the size and location of a concentrated mass on the modal characteristics of the beam are investigated numerically.

  • PDF

상지 재활을 위한 3-D 로봇 시스템의 개발 (Development of a 3-D Rehabilitation Robot System for Upper Extremities)

  • 신규현;이수한
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.64-71
    • /
    • 2009
  • A 3-D rehabilitation robot system is developed in this paper. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for enabling occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system, which is driven by actuators, has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. Passive motion mode experiments have been performed to evaluate the proposed robot system. The results of the experiments show and excellent performance in simulating spasticity of patients.

크랙과 집중질량을 갖는 회전 외팔보의 진동 해석 (Vibration Analysis of a Cracked Beam with a Concentrated Mass Undergoing Rotational Motion)

  • 김민권;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.10-16
    • /
    • 2009
  • Modal characteristics of a cracked beam with a concentrated mass undergoing rotational motion are investigated in this paper. Hybrid deformation variables are employed to derive the equations of motion of a rotating cantilever beam. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack and the size and location of a concentrated mass on the modal characteristics of the beam are investigated numerically.

주짓수 선수의 허리 통증 유무에 따른 엉덩관절 돌림 가동범위 비교 (Comparison of Hip Rotation Range of Motion in Jiu-Jitsu Athletes With and Without Low Back Pain)

  • 양성준;박규남;경문수;김시현
    • 한국전문물리치료학회지
    • /
    • 제25권1호
    • /
    • pp.47-52
    • /
    • 2018
  • Background: A limited hip rotational range of motion (ROM) has been considered to be one of characteristics of low back pain (LBP) in athletes. Although LBP frequently occurs in jiu-jitsu athletes, no previous has compared hip rotational ROM between jiu-jitsu athletes with and without LBP. Objects: The aim of the study was to compare ROM for hip internal rotation (IR) and external rotation (ER), and total hip rotation between jiu-jitsu athletes with and without LBP. Methods: Jiu-jitsu athletes were recruited for the LBP group ($n_1=15$) and control group without LBP ($n_2=15$). IR, ER, and total rotational range of hip joint were measured using a goniometer. Analysis of variance was used to compare the ROM between groups and sides. Results: The LBP group showed a significantly lower range of passive hip IR, passive total rotation, active IR, active ER, and active total rotation than the control group (p<.05). Dominant side of passive hip IR and active IR had a significantly lower ROM than non-dominant side (p<.05). In passive ER ROM, non-dominant side was significantly greater than dominant side (p<.05). Conclusion: Compared to jiu-jitsu athletes without LBP, athletes with LBP exhibit a loss of hip rotational ROM. Based on these results, clinicians and athletic trainers should measure hip rotational ROM when designing the management plan for jiu-jitsu athletes with LBP.

상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어 (Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities)

  • 이수한;신규현
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

바탕회전하에 회전요동하는 직사각형용기 내의 유동에 관한 연구 (Study on Fluid Flows in a Rectangular Container Subjected to a Background Rotation and a Rotational Oscillation)

  • 박재현;서용권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.215-219
    • /
    • 2002
  • In this study, we show the numerical and the experimental results for fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the numerical computation, we used a parallel computer system of PC-cluster type. Attention is given to dependence of the flow patterns on the parameter change. It shows that the flow becomes in a periodic state at low Reynolds numbers and undergoes a transition to a chaotic motion at high Reynolds numbers. It also shows that the fluid motion tends to be depth-independent at ${\epsilon}$ up to 0.3 for Re lower than 5235.

  • PDF

기초가진 로터-베어링 시스템의 상태공간 과도응답해석 (A State-Space Transient Response Analysis of Rotor-Bearing System with Base Excitation)

  • 이안성;김병옥;김영철;김영춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.669-674
    • /
    • 2004
  • In this study, the analytical method to evaluate the response of rotor-bearing system subjected to base excitation was presented. The equations of motion contain speed dependent gyroscopic terms, base rotation dependent parametric terms and several forcing function terms which depend on linear accelerations, rotational accelerations and a combination of linear and rotational combination. The study of rotor-bearing system excited by its base motion is not only able to predict the rotational performance, but provides the fundamental data for vibration isolation. In order to illustrate transient response, transient response analysis of a practical application sample were performed. The transient response was carried out for the given base excitation by using the state-space Newmark method that incorporates the average velocity concept.

  • PDF

이송중인 웹과 롤러의 슬립에 관한 연구 (A Study on the Slippage between a Moving Web and a Roller)

  • 권순오;신기현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1542-1547
    • /
    • 2003
  • Air entrainment can become a significant problem in a web handling process. The development of air film between a web and an idle roller can cause a reduction of traction and traction coefficient, by which a slip is occurrred. Computational and experimental study was carried out to describe the slippage of an idle roller for given operating conditions, tension and web velocity. An extended mathematical model to find out a slip condition was developed by using the models of air film height, dynamic traction coefficient, and torque balance of a rotational roller. And by using the extended model, a mechanism to define the slippage between the roller and the moving web was suggested. The results of simulation and experiment showed that the extended dynamic model could properly characterize the rotational motion of the idle roller by considering dynamic traction coefficient. By examining the rotational motion of the idle roller with web dynamics(speed), the mechanism to define al slip condition between the roller and the web was found to be effective.

  • PDF

Near Minimum-Time Trajectory Planning for Wheeled Mobile Robots with Piecewise Constant Voltages

  • Park, Jong-Suk;Kim, Munsang;Kim, Byung-Kook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.30.6-30
    • /
    • 2001
  • We build near minimum-time trajectory planning algorithm for Wheeled mobile robots (WMRs) With Piece-Wise Constant control voltages satisfying i) initial and final postures and velocities as well as ii) voltage constraints We consider trajectory planning problem for cornering motion with a path-deviation requirement for obstacle avoidance. We divide our trajectory planning algorithm for cornering motion into five ordered sections: translational, transient, rotational, transient, and translational sections. Transforming dynamics into uncorrelated form with respect to translational and rotational velocities, we can make controls for translation/rotational velocities to be independent. By planning each section with constant voltages, and integrating five sections with adjustment of numbers of steps, the overall trajectory is planned. The performance is very close to the minimum-time solution, which is validated via simulation studies.

  • PDF