• Title/Summary/Keyword: Rotational Motion

Search Result 606, Processing Time 0.025 seconds

Study on the Swirling Motion Effect of Ejector Performance (회전 운동이 이젝터 성능에 미치는 영향에 관한 연구)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.544-549
    • /
    • 2017
  • This paper aims to examine the effect of rotational fluid motion about the efficiency of the gas - liquid ejector, which is a core unit in a ship equilibrium water treatment system. The ejector is a device for injecting ozone into ship equilibrium by the negative pressure generated by exchange of momentum between water and ozone. The existing ejector ejects the driving fluid with a simple form. In this paper, however, a rotation induction device is applied to the driving nozzle so that the driving fluid can be rotated and injected. To investigate the flow characteristics by the rotational movement of the driving fluid, CFD was used. The pressure and flow rate of the driving fluid, the negative pressure and suction flow rate of the suction fluid in the suction part, and the discharge pressure were predicted. On the basis of the results, the efficiency of the ejector using the rotation induction system was 22.25%, which was about 1.7% better than that of the existing ejector. Finally, to verify the feasibility of the CFD, an experiment was conducted on the ejector using the rotation induction device and the results were similar to those of the CFD.

Kinesiology Based Human-like Walking Pattern Design for a Bipedal Robot (인체운동학에 기반한 이족로봇의 인간형 걸음새 설계)

  • Park, Jin-Hee;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.659-667
    • /
    • 2011
  • The study of bipedal robot is towards similar shape and function with human. In this paper, we propose a human-like walking pattern compatible to the flexible foot with toe and heel structure. The new walking pattern for a bipedal robot consists of ZMP, center of mass (CoM), and ankle trajectory and is drawn by considering human kinesiology. First, the ZMP trajectory moves forward without stopping at a point even in the single support phase. The corresponding CoM trajectory to the ZMP one is derived by solving differential equations. As well, a CoM trajectory for the vertical axis is added by following the idea of human motion. The ankle trajectory closely mimics the rotational motion of human ankles during taking off and landing on the ground. The advantages of the proposed walking pattern are demonstrated by showing improved stability, decreased ankle torque, and the longer step length capability. Specifically, it is interesting to know that the vertical CoM motion is able to compensate for the initial transient response.

Visualization of Flow inside the Side Channel Type Regenerative Blower (사이드 채널형 재생블로워의 내부 유동 가시화)

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves (홈이 회전하는 빗살무늬 저널 베어링의 안정성 해석)

  • 윤진욱;장건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic Journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

Design of a slim piezoelectric actuator for mobile phone camera (카메라폰용 슬림형 액츄에이터 설계)

  • Lee, Seung-Hwan;Kim, Kyoung-Ho;Kim, Jung-Yun;Lee, Seung-Yop;Kim, Sook-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.488-491
    • /
    • 2006
  • In this paper, a slim type actuator is proposed rising a bimorph PZT and a circular rotor link. The bimorph contacts the circular rotor, and its displacement generates the rotational motion of the rotor. The rotor causes the linear motion of AF and zoom lens through gear and a motion guide. The proposed model enables the actuations of many lens groups for zoom module by extending the single lens model. The important design parameter is the contact force determined by the frictional coefficient and preload between the rotor and PZT bimorph. A prototype of the single actuator model is manufactured and experiments results using LDV and tachometer are compared to the theoretical and numerical predictions. Experiments show the linear bimorph actuator model meets the performance criteria of the lens actuation, and it can be applicable to various slim type actuators for AF and zoom motions in mobile cameras.

  • PDF

A Study on the Contour Design of the Hinge Mechanism for a Mobile Phone Driven by Continuous Torques (연속적인 회전력으로 작동하는 휴대폰 힌지기구의 윤곽 설계에 관한 연구)

  • Park, Jong-keun;Lee, Soo Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • A total stroke of an opening or closing motion of a hinge mechanism for a folder-type mobile phone is composed of two portions. In the first portion, human fingers act a torque to open or close the folder. In this portion, the rotating folder compresses the coil spring installed in the hinge mechanism. In the last portion, this compressed coil spring generates a torque to rotate the folder. In this study, we have developed an algorithm to design a hinge mechanism to be operated by an arbitrary continuous torque in the first portion of the total stroke. Consequently, we can design hinge mechanisms that satisfy various demands of consumers. A pair of contours installed in the mechanism plays an important role. It transforms the folder's rotational motion into translation to compress the coil spring in the first portion; on the other hand, it transforms translational motion into the folder's rotation in the last portion. Using this algorithm we have designed the pair of the contour curves operated by an arbitrary continuous torque.

Numerical Model of Propulsive Behavior of a Rotating Spring in Viscous Fluid (점성유체 중에 회전하는 스프링의 추진적 거동에 관한 수치해석 모델)

  • Choi, Won Yeol;Suh, Yong Kweon;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.497-504
    • /
    • 2015
  • In this paper, we study the propulsive behavior related to the flagellar motion of bacteria using a spring model. A commercial program was used to conduct simulations, and we verified the numerical technique by setting an additional rotating domain and conducting a parametric study. The numerical results are in good agreement with slender-body theory, although overall, they are not in agreement with resistive-force theory. We confirm the effect of the rotational velocity, pitch, helical radius, fluid viscosity, and, in particular, the distance from the wall on the propulsion of the spring.

Optimal Home Positioning Algorithm for a 6-DOF Eclipse-II Motion Simulator (6-자유도 Eclipse-II 모션 시뮬레이터의 최적 원점 복귀 알고리즘)

  • Shin, Hyun-Pyo;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.441-448
    • /
    • 2012
  • This paper describes the optimal home positioning algorithm of Eclipse-II, a new conceptual parallel mechanism for motion simulator. Eclipse-II is capable of translation and 360 degrees continuous rotation in all directions. In unexpected situations such as emergency stop, riders have to be resituated as soon as possible through a shortest translational and rotational path because the return paths are not unique in view of inverse kinematic solution. Eclipse-II is man riding. Therefore, the home positioning is directly related to the safety of riders. To ensure a least elapsed time, ZYX Euler angle inverse kinematics is applied to find an optimal home orientation. In addition, the subsequent decrease of maximum acceleration and jerk values is achieved by combining the optimal return path function with cubic spline, which consequently reduces delivery force and vibration to riders.

A Study on the Development of a 2-axis Stage with Sequence Control for Micro Particle Blast Machining (미세입자 분사가공용 시퀸스 제어가 가능한 2축 스테이지 개발에 관한 연구)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.81-87
    • /
    • 2020
  • A stable rotational-to-linear motion transformation structure using a driving mechanism with 2 degrees of freedom was developed for an orthogonal mechanism to prevent the interference of each axis in 2D motion. In this mechanism, a step motor was used for precise position control. This structure was developed to maneuver workparts in micro particle blast machining experiments. To determine the real-time performance of micro particle blast machining, the control, input, and output were operated simultaneously and precise position control was implemented, using a timer interrupt with multiple execution codes. The two step motors obtained precise position control by removing backlash with a ball-screw mechanism. The device has menu-type control codes for user-friendliness, and real-time sequence control was simultaneously adopted for user control input.