• Title/Summary/Keyword: Rotational Barrier

Search Result 24, Processing Time 0.022 seconds

Ab-inito and NMR Studies on the Rotational Barrier for Thioacetamide and Acetamide

  • 최영기;송근일;최영상;윤창주
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1094-1099
    • /
    • 1997
  • The rotational barriers of thioacetamide (TA) and acetamide (AA) were studied using the ab-initio molecular orbital theory and NMR spectroscopy. The calculated rotational barriers using MP2/6-31G**//MP2/6-31G** for TA was 72.26 kJ/mol and 58.19 kJ/mol for AA, respectively. These results are good agreement with the experimental data. The tendency for the change of structural parameters is consistent with the result of formamide. In both amides, the rotational barrier arises from the pyramidalization of nitrogen. The chemical shifts of both amides are shifted upfield when temperature is raised, which confirms pyramidalization of nitrogen. The lineshape of 1H-NMR spectra of TA shows quintet which is contributed from two triplet spectra. This means that the distribution of electrons around the nitrogen is rather symmetric. Ab-initio calculations of electric field gradient for both amides confirm the above results. The above experimental results are well understood by Keith's view on thioamides, which excludes the contribution of resonance structure and considers the origin of rotational barrier to be the same in both thioamides and in corresponding amides.

The Structural Features and Rotational Barriers in Indenyl Allyl Metal Complexes

  • Sungkwon Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.554-559
    • /
    • 1989
  • The electronic structure, conformational preferences, and rotational barriers have been studied for transition metal indenyl allyl complexes by means of extended Huckel calculations. After geometrical optimization the exo conformation of allyl moiety is favored over the endo. The rotational barrier of indenyl ring in (Indenyl)Mo(CO)_2(Allyl)$ is computed to be 3.8 kcal/mol. Population analysis is applied to account for the conformational preferences and rotational barriers. A series of substituted allyl complexes has been also optimized. It shows steric hindrance plays a crucial role in setting the allyl orientation.

Effects of Li$^+$ and Ag$^+$ Ions on the Rotational Barrier in Acetamide and propionamide System

  • Kwon, Dae-Keun;Choi, Young-Sang;Yoon, Chang-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 1986
  • The influences of $LiNO_3\;and\;AgNO_3$ on the N-C(O) rotational barrier of N,N-dimethylacetamide and N,N-dimethylpropionamide have been investigated. The rotational activation free energy $({\Delta}G^{\neq})\;for\;Li^{+}$-amide complexes is found to increase with increasing salt concentration. On the other hand, that for $Ag^+$-amide complexes increases in the presence of $Ag^+$ ion up to 0.25 M ion concentration and then decreases as the concentration of $Ag^+$ ion is further increased. Such an unusual behavior of $Ag^+$-amide complexes has been interpreted in terms of ion-pairing and diluent effect on the amides. However, $^{13}C$ nmr chemical shift data for the amides have shown that both of these ions interact primarily with the carbonyl group in amides.

Photochemical Transformation of Chalcone Derivatives

  • Shin, Dong-Myung;Song, Dong-Mee;Jung, Kyoung-Hoon;Moon, Ji-Hye
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.9-12
    • /
    • 2001
  • The photoisomerization behavior of benzylideneacetophenones, known as chalcones, was studied. We synthesized the chalcone derivatives that have ether groups at 4 and 4' positions. Due to the electron donating ability of the ether oxygen, the bond order of the single bond between two phenyl ring of the chalcone strengthened, which eventually increased the rotational barrier of the single bond. The rotational barrier of the single bond is about 20-22 kcal/mole. Thermal recovery of this process took about 1 min. The UV-visible spectra of these chromophores exhibit two characteristic absorption peaks at 276 nm and 340 nm. The relative intensity of the peaks varies depending on the alkyl chain length of the substituent. Photo-irradiation with the 365 nm light monotonously decreases the 340 nm peak. However, the photo-irradiation with 254 nm light induce two competing processes and produced rather complicated absorption profile.

  • PDF

Vehicle-induced aerodynamic loads on highway sound barriers part1: field experiment

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.435-449
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. A field experiment is carried out with respect to three important factors: vehicle type, vehicle speed and the vehicle-barrier separation distance. Based on the results, the time-history of pressures is given, showing identical characteristics in all cases. Therefore, the vehicle-induced aerodynamic loads acting on the highway sound barrier are summarized as the combination of "head impact" and "wake impact". The head impact appears to have potential features, while the wake impact is influenced by the rotational flow. Then parameters in the experiment are analyzed, showing that the head impact varies with vehicle speed, vehicle-barrier separation distance, vehicle shape and cross-sectional area, while the wake impact is mainly about vehicle-barrier separation distance and vehicle length.

On the Rotational Barrier of Organic Molecules (I). Role of Axial Carbon in Ethane (유기분자의 내부 회전장벽에 관한 이론적 연구 (제1보). 에탄에서의 중심 탄소의 역할)

  • Young Sik Kim;Hojing Kim
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.117-127
    • /
    • 1982
  • In order to analyze the role of axial carbon atoms in rotational barrier of ethane, we take the carbonless ethane, as a model, which is made of six hydrogens in coordinates of ethane. The energy of the system is calculated by McWeeny's open-shell restricted Hartree-Foch selfconsistent-field (RHF-SCF) method, and the transition density on the staggered-to-eclipsed rotation is examined. As being expected, the eclipsed form of the model is more stable than the staggered one. Through the transition density comparison of this model and real ethane, it is found that the existence of the axial carbon atoms induces the electronic density to be diluted in the vicinity of protonic sites and to be attracted to the region of carbon atoms or further to C-C bond region as the barrier is traversed. This migration of electronic charge tell us that the barrier to the internal rotation of ethane originates from the fact that the magnitude of electronic energy depression is not large enough to offset the increased nuclear-nuclear repulsion on the staggered-to-eclipsed rotation.

  • PDF

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

Conformational Preference of Pseudo-Proline Dipeptide in the Gas Phase and Solutions

  • Park, Hae-Sook;Kang, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.74-74
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of oxazolidine (Ac-Oxa-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level of theory with the 6-3l+G(d) basis set. The displacement of the $\square$-CH$_2$ group in proline ring by oxygen atom has affected the structure of proline, cis$\^$∼/ trans equilibrium, and rotational barrier. The up-puckered structure is found to be prevalent for the trans conformers of the Oxa amide. The higher cis populations of the Oxa amide can be interpreted due to the longer distance between the acetyl methyl group and the 5-methylene group of the ring for the trans conformer of the Oxa amide than that of the Pro amide. The changes in charge of the prolyl nitrogen and the decrease in electron overlap of the C$\^$∼/ N bond for TS structures seem to play a role in lowering rotational barriers of the Oxa amide compared to that of the Pro amide. The calculated preferences for cis conformers in the order of Oxa > Pro amides and for trans-to-cis rotational barriers in the order of Pro > Oxa amide in water are consistent with experimental results on Oxa-containing peptides. The pertinent distance between the prolyl nitrogen and the N$\^$∼/ H amide group to form a hydrogen bond might indicate that this intramolecular hydrogen bond could contribute in stabilizing the TS structures of Oxa and Pro amides and play a role in prolyl isomerization.

  • PDF

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

Non-Bonded Interaction Effects on Cis-Trans Isomerization of 1-Bromopropene

  • Huh, Do-Sung;Jung Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 1992
  • The hindered internal rotation effect of methyl group on chemical reaction was studied for cis-trans isomerization reaction of 1-bromopropene system using RRKM technique. A comparative study of the isomerization rates was also performed between the rigid and allowed internal rotations. The calculated rate of rigid cis-trans isomerization of 1-bromopropene was shown to be three times higher than its other halogenated propene homologues with its internal rotations and found to be in good agreement with experimental observations. These findings could be explained reasonably well in terms of the differences of the rotational barrier heights among halogenated propenes and correlated with the relatively low internal rotation barrier of cis-1-bromopropene, 230 cal/mol, compared to those of other cis-1-halopropenes, 700-800 cal/mol, and trans-1-halopropenes, 2.0-2.4 kcal/mol.