• 제목/요약/키워드: Rotational Accuracy

검색결과 276건 처리시간 0.026초

Experimental axial force identification based on modified Timoshenko beam theory

  • Li, Dong-sheng;Yuan, Yong-qiang;Li, Kun-peng;Li, Hong-nan
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.153-173
    • /
    • 2017
  • An improved method is presented to estimate the axial force of a bar member with vibrational measurements based on modified Timoshenko beam theory. Bending stiffness effects, rotational inertia, shear deformation, rotational inertia caused by shear deformation are all taken into account. Axial forces are estimated with certain natural frequency and corresponding mode shape, which are acquired from dynamic tests with five accelerometers. In the paper, modified Timoshenko beam theory is first presented with the inclusion of axial force and rotational inertia effects. Consistent mass and stiffness matrices for the modified Timoshenko beam theory are derived and then used in finite element simulations to investigate force identification accuracy under different boundary conditions and the influence of critical axial force ratio. The deformation coefficient which accounts for rotational inertia effects of the shearing deformation is discussed, and the relationship between the changing wave speed and the frequency is comprehensively examined to improve accuracy of the deformation coefficient. Finally, dynamic tests are conducted in our laboratory to identify progressive axial forces of a steel plate and a truss structure respectively. And the axial forces identified by the proposed method are in good agreement with the forces measured by FBG sensors and strain gauges. A significant advantage of this axial force identification method is that no assumption on boundary conditions is needed and excellent force identification accuracy can be achieved.

뉴로내비게이션 시스템 표면정합에 대한 병변 정합 오차의 회전적 특성 분석: 팬텀 연구 (Rotational Characteristics of Target Registration Error for Contour-based Registration in Neuronavigation System: A Phantom Study)

  • 박현준;문정환;유학제;신기영;심태용
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권2호
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, we investigated the rotational characteristics which were comprised of directionality and linearity of target registration error (TRE) as a study in advance to enhance the accuracy of contour-based registration in neuronavigation. For the experiment, two rigid head phantoms that have different faces with specially designed target frame fixed inside of the phantoms were used. Three-dimensional coordinates of facial surface point cloud and target point of the phantoms were acquired using computed tomography (CT) and 3D scanner. Iterative closest point (ICP) method was used for registration of two different point cloud and the directionality and linearity of TRE in overall head were calculated by using 3D position of targets after registration. As a result, it was represented that TRE had consistent direction in overall head region and was increased in linear fashion as distance from facial surface, but did not show high linearity. These results indicated that it is possible for decrease TRE by controlling orientation of facial surface point cloud acquired from scanner, and the prediction of TRE from surface registration error can decrease the registration accuracy in lesion. In the further studies, we have to develop the contour-based registration method for improvement of accuracy by considering rotational characteristics of TRE.

NC 선반주축 의 회전성능 향상 을 위한 실험적 연구 (An Experimental Study on the Rotational Performances of NC Lathe Spindle System)

  • 이형식;이봉진;송기무
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.86-94
    • /
    • 1984
  • 본 연구에서는 최신형 슬란트베드(slant-bed)타입의 중절삭용 NC선반주축을 대상으로 하여, 구동방식의 변경-기어변속장치를 주축으로부터 완전히 분리시키고 V벨 트에 의해 구동되는 후로팅방식의 새로운 주촉구조를 설계-을 통하여 고속에서의 주축 의 회전성능 향상을 시도하였고, 실험을 통하여 그 회전성능을 전형적인 3개의 서로 다른 재래식 선반주축모델들의 값과 비교 고찰하였다.

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed)

  • 황영국;조영덕;이춘만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1) (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1))

  • 황영국;정원지;이춘만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

A new rotational force model for quasi-steady theory of plate-like windborne debris in uniform flow

  • Lin, Huatan;Huang, Peng;Gu, Ming
    • Wind and Structures
    • /
    • 제35권2호
    • /
    • pp.109-120
    • /
    • 2022
  • The force coefficients of rotating plates in the acceleration stage will vary with rotation rate from 0 to stable rotation rate w0, which are important for quasi-steady theory of plate-like windborne debris to simulate the trajectory. In this paper, a wind tunnel experiment is carried out to study the effects of geometry and the Reynolds number on the variations of mean force coefficients of rotating plates. The rotational lift coefficients are sensitive to both geometry effect and Reynolds number effect, while the rotational drag and moment coefficients are only sensitive to geometry effect. In addition, new empirical formulas for the rotational lift coefficient and moment coefficients are proposed. Its accuracy is verified by comparing the predicted results with existing test data. Based on the experimental data of rotating plates, a new rotational force model for quasi-steady theory, which can be applied to a wider scope, is proposed to calculate the trajectory of plate-like windborne debris. The results show that the new model provides a better match with the tested trajectories than previous quasi-steady theories.

유한요소법을 이용한 주축 인터페이스부의 정강성 특성 (Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method)

  • 황영국;정원지;이춘만
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

가공정밀도에 영향을 미치는 환경요소 분석 (Analysis of Environmental Factors Affecting the Machining Accuracy)

  • 김영복;이의삼;박준;황연;이준기
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.