• 제목/요약/키워드: Rotation bump

검색결과 3건 처리시간 0.017초

각 연산을 이용한 효과적인 범프 매핑 하드웨어 구조 설계 (Design of an Effective Bump Mapping Hardware Architecture Using Angular Operation)

  • 이승기;박우찬;김상덕;한탁돈
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권11호
    • /
    • pp.663-674
    • /
    • 2003
  • 범프 매핑은 복잡한 모델링 과정 없이 기하 매핑을 통하여 땅콩 껍질의 돌기와 같은 객체 표면의 세밀한 부분을 표현해내는 기법이다. 그러나 이 기법은 법선 벡터 쉐이딩과 같은 상당한 복잡도를 가진 연산을 픽셀 당 처리해줘야 하므로, 이의 하드웨어 구현은 상당한 비용을 필요로 한다. 본 논문에서는 극 좌표계를 이용한 새로운 범프 매핑 알고리즘 및 하드웨어 구조를 제안한다. 이는 참조 공간으로의 변환을 위한 새로운 벡터 회전 방식과 연산이 최소화된 조명 계산 방식을 갖는 구조로, 기존의 구조에 비해 범프 매핑을 효과적으로 수행한다. 결과적으로 제안하는 구조는 범프 매핑에 필요한 연산 및 하드웨어를 상당량 줄였다.

Effect of rotation bump on removal torque of orthodontic mini-implants

  • Gansukh, Odontuya;Jeong, Jong-Wha;Kim, Jong-Wan;Kim, Young-Kyun;Lee, Jong-Ho;Kim, Tae-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제39권6호
    • /
    • pp.269-273
    • /
    • 2013
  • Objectives: This study is designed to evaluate the mechanical stability of orthodontic mini-implants with vertical grooves in rabbits. Materials and Methods: This study was done from March 2011 to February 2012 in Dental Research Institute of Seoul National University. Thirty-two mini-implants in the control group and 32 in the rotation bump (RB) group were inserted in the tibias of 16 rabbits and were removed after two weeks and four weeks, respectively. The maximum insertion torque (MIT), maximum removal torque (MRT), torque ratio (TR) of MRT to MIT and removal angular momentum (RAM) were all measured at the time of removal. Results: There were no significant differences between the two groups in MIT and MRT at two weeks or four weeks. However, TR and RAM at four weeks in the RB group were significantly higher than in the control group (P<0.05). TR of the RB group was significantly increased at four weeks (P<0.05). In both groups, RAM at four weeks was significantly higher than at two weeks (P<0.05). Conclusion: These results suggest that RB of the mini-implant could provide resistance to the removal rotation, although it did not increase the MRT.

Bouncing과 Sliding에 의한 55 kW급 전기 트랙터의 조향 불안정성 수치해석 (Numerical Analysis of Steering Instability of 55kW Eletric Tractor by Bouncing and Sliding)

  • 김영수;손진호;한유진;강석호;박형규;김용직;우승민;하유신
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권3호
    • /
    • pp.56-69
    • /
    • 2024
  • Tractors are used for farming in harsh terrain such as slopes with slippery fields and steep passages. In these potentially dangerous terrain, steering instability caused by bouncing and sliding can lead to tractor rollover accidents. The center of gravity changes as parts such as engines and transmissions used in existing internal combustion engine tractors are replaced by motors and batteries, and the risk of conduction must be newly considered accordingly. The purpose of this study was to derive the center of gravity of a 55 kW class electric tractor using an electric platform from an existing internal combustion engine tractor, and to numerically investigate the tractor steering instability due to bouncing and sliding. The analysis provides a strong analysis by integrating an elaborate combination of a bouncing model and a sliding model based on Coulomb's theory of friction. Various parameters such as tractor speed, static coefficient of friction, bump length and radius of rotation are carefully analyzed through a series of detailed designs. In particular, the simulation results show that the cornering force is significantly reduced, resulting in unintended trajectory deviations. By considering such complexity, this study aims to secure optimal performance and safety in the challenging terrain within the agricultural landscape by providing valuable insights to improve tractor safety measures.