• Title/Summary/Keyword: Rotation Angle

Search Result 1,346, Processing Time 0.026 seconds

RETROSPECTIVE STUDY OF FACE MASK THERAPY (FACE MASK의 치료 효과에 대한 후향적 고찰)

  • Kim, Tae-Woo;Chang, Young-Il;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.547-556
    • /
    • 1996
  • The purpose of this study was to evaluate the skeletal, dental and soft tissue profile changes following the face mask therapy in growing skeletal class III malocclusion patients. The fifteen patients with the good results were selected among the patients who visited the Department of Orthodontics in Seoul National University Hospital. The mean age was 10.63(range 7.25-13.25) years and the mean treatment duration was 9.84(range 2.00-27.00) months. Lateral cephalograms were taken just before and after face mask application. After tracing the cephalograms, thirty five items(twety angular and fifteen linear) were measured. The differences before and after the face mask therapy were compared statistically by the paired t-test(p<0.05). The results were as follows : SNA and Co-A(effective maxillary length) increased significantly after using the face mask(p<0.001), which reflects the orthopedic changes of maxilla. SNB and Co-Gn(effective mandibular length) also showed an increase(p<0.01), which may be a result of the strong growth trends of the samples. FMA, SN-GoGn and Y-axis angle increased significantly(p<0.01), which means the backward and downward rotation of the mandible. This positional change seemed to have compensated an increase of effective mandibular length. There was no statistically significant difference in angulation of upper and lower incisors between pre-treatment and post-treatment(p>0.05). In soft tissue profile, the upper lip was positioned anteriorly(p<0.01) after treatment and approximated to the normal standards.

  • PDF

Normal Range of Shoulder Motion and Fluoroscopic Analysis of Motion Fraction (정상인의 견관절 운동범위 및 방사선 투시기를 이용한 운동분율측정)

  • Choi Chang-Hyuk;Yun Gi-Hyun
    • Clinics in Shoulder and Elbow
    • /
    • v.1 no.2
    • /
    • pp.221-229
    • /
    • 1998
  • We measured, with manual goniometer, the active and passive arc of motion of the shoulder in 31 healthy male subjects who were right-hand dominant and who ranged in age from twenty to thirty-one years. Among ten directions through the four motion plane, the range of motion on the dominant side were significantly smaller than those on the non-dominant side in the motion of six directions. We also measured the motion fraction of the glenohumeral and scapulothoracic movement using fluoroscope in 30-degree intervals of arm elevation in the scapular plane. The ratio of glenohumeral to scapulothoracic movement(θGH/θST) was 1.6 for the full range of motion in scapular plane. At the lower angles of abduction, scapulothoracic movement was slight compared with glenohumeral movement. The motion fraction of scapulothoracic joint was increased from 60-degree to 150 degree of arm angle especially between 120 to 150 degree. During arm elevation, scapula was also extended from 42 degrees to 20 degrees tilting as well as internal rotation. The measuring technique of glenohumeral to scapulothoracic movement(θGH/θST) with fluoroscopy could be applied to the simple radiographic measurement at the out-patient clinic in order to identify the pathology and recovery of shoulder motion after treatment.

  • PDF

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Study on a moir$\acute{e}$ Artifact in the Use of Carbon Interspaced Antiscatter Grids for Digital Radiography (탄소 중간물질 그리드를 사용한 DR system에서의 moir$\acute{e}$ artifact에 관한 연구)

  • Lee, Sung-Ju;Cho, Hyo-Sung;Choi, Sung-Il;Cho, Hee-Moon;Oh, Ji-Eun;Lee, So-Young;Park, Yeon-Ok;Lee, Min-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.5-9
    • /
    • 2008
  • Antiscatter grids are widely used in radiography to remove scattered X-rays and thus improve the image contrast. However, the use of grids makes moir$\acute{e}$ artifact in the digital image, and this can be a critical reason for a mistaken diagnosis. In this paper, we examined that moire artifacts are how to relate with grid frequency, pixel pitch and grid rotation angle. To experiment we prepared 6 grids having different line frequencies (4.0 to 8.5lines/mm) and tested with a DR imager having a $139{\mu}m{\times}139{\mu}m$ pixel size. In the result of this experiment, we could get data about moir$\acute{e}$ artifact that could be make solution to remove the line artifact for the successful use of the grid in digital radiography. The acquired data and theory through this experiment, are expected to make contribution to the elimination of moir$\acute{e}$ artifact in the DR system.

  • PDF

In Vitro Assessment of MRI Safety at 1.5 T and 3.0 T for Bone-Anchored Hearing Aid Implant (Bone-Anchored Hearing Aid Implant에 대한 1.5 T와 3.0 T에서 MRI 안전성의 생체외 평가)

  • Yeon, Kyoo-Jin;Kim, Hyun-Soo;Lee, Seung-keun;Lee, Tae-Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • The aim of this study was to evaluate Magnetic Resonance Imaging safety by measuring the translational attraction, torque and susceptibility artifact for Bone-Anchored Hearing Aid (BAHA) implant at 1.5 T and 3.0 T MRI by standard criteria. In vitro assessment tools were made of acrylic-resin by American Society for Testing and Materials (ASTM) F2052-06 and F2119-07 standard. Translational attraction of BAHA implant was measured by the maximum deflection angle at 96 cm position, where the magnetically induced deflection was the greatest. The torque was assessed by the qualitative criteria of evaluating the alignment and rotation pattern, when the BAHA implant was positioned on a line with $45^{\circ}$ intervals inside the circular container in the center of the bore. The susceptibility artifact images were obtained using the hanged test tool, which was filled with $CuSO_4$ solution. And then the artifact size was measured using Susceptibility A rtifact Measurement (SA M) software. In results, the translational attraction was 0 mm at both 1.5 T and 3.0 T and the torque was 0(no torque) at 1.5 T, and +1(mild torque) at 3.0 T. The size of susceptibility artifacts was between 13.20 mm and 38.91 mm. Therefore, The BAHA implant was safe for the patient in clinical MR environment.

Open Source-Based Surgical Navigation for Fracture Reduction of Lower Limb (오픈소스 기반 수술항법장치의 하지 골절수술 응용검토)

  • Joung, Sanghyun;Park, Jaeyeong;Park, Chul-Woo;Oh, Chang-Wug;Park, Il Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.497-503
    • /
    • 2014
  • Minimally invasive intramedullary nail insertion or plate osteosynthesis has shown good results for the treatment of long bone fractures. However, directly seeing the fracture site is impossible; surgeons can only confirm bone fragments through a fluoroscopic imaging system. The narrow field of view of the equipment causes malalignment of the fracture reduction, and radiation exposure to medical staff is inevitable. This paper suggests two methods to solve these problems: surgical navigation using 3D models reconstructed from computed tomography (CT) images to show the real positions of bone fragments and estimating the rotational angle of proximal bone fragments from 2D fluoroscopic images. The suggested methods were implemented using open-source code or software and evaluated using a model bone. The registration error was about 2 mm with surgical navigation, and the rotation estimation software could discern differences of $2.5^{\circ}$ within a range of $15^{\circ}$ through a comparison with the image of a normal bone.

Construction of 3D Digital Maps Using 3D Symbols (3차원 심볼을 활용한 3차원 수치지도 제작에 관한 연구)

  • Park, Seung-Yong;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.417-424
    • /
    • 2006
  • Despite of many researches related to create 3D digital maps, it is still time-consuming and costly because a large part of 3D digital mapping is conducted manually. To circumvent this limitation, we proposed methodologies to create 3D digital maps with 3D symbols automatically. For this purpose, firstly, the 3D symbol library to represent 3D objects as 3D symbols was constructed. In this library, we stored the attribute and geometry information of 3D objects which define types and shapes of symbols respectively. These information were used to match 3D objects with 3D symbols and extracted from 2D digital maps and LiDAR(Light Detection and Ranging) data. Then, to locate 3D symbols into a base map automatically, we used predefined parameters such as the size, the height, the rotation angle and the center of gravity of 3D objects which are extracted from LiDAR data. Finally, the 3D digital map in urban area was constructed and the results were tested. Through this research, we can identify that the developed algorithms can be used as effective techniques for 3D digital mapping.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Cyclic Loading Test on Connection of SRC Column-Composite Beam Consisting of H-Section and U-Section Members (SRC기둥-H형단면과 U형단면으로 구성된 합성보 접합부의 반복가력실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Kim, Jin Won;Ryu, Hong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2014
  • In this study, connection of steel reinforced concrete(SRC) column and composite beam which consists of H-section and U-section members were tested under cyclic loading. An essential point of the composite beam is the structural performance of welded joint between the H-section and the U-section members. To improve the structural performance of joint of two beam members, vertical stiffeners, trapezoidal stiffeners, and top bars were used. Five full-scaled specimens were designed to study the effect of a number of parameters on cyclic performance of connections such as H-section beam size($H-500{\times}200{\times}10{\times}16$, $H-600{\times}200{\times}11{\times}17$), the presence of stiffeners and top bars, and the presence of no weld access hole(WAH) method. Based on the test results, deformation capacity of the specimens with H-500 series beam and H-600 series beam were 4% and 3% rotation angle, which is the requirement for the Special Moment Frame and Intermediate Moment Frame(IMF), respectively. Test result showed that deformation capacity of connection with stiffeners and top bars is greater than that of connection without stiffeners and top bars. Finally, energy dissipation capacity and strain profile of specimens were summarized.

The Study of Grashey Method Viewing the Glenohumeral(shoulder) Joint (어깨관절의 접시오목을 나타내는 Grashey법에 대한 연구)

  • Lee, Jaeseob;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.331-335
    • /
    • 2015
  • Consideration of Glenohumeral joint's image with the Changed Body angle of the Glenohumeral joint's Oblique Position in Erect Position. Glenohumeral joint's of Grashey method is a shoulder oblique method available to view the shoulder joint. Grashey method projects AP view of the Glenohumeral joint's so that the Humerus head's subluxation or joint degeneration can be easily visualized. However in this view, the patients, erect position, have to keep their body obliquely. Oblique position is will be needed to get the good quality Glenohumeral joint's view. Therefore, we thought of examining a method which shows the Glenohumeral joint's well by angling the patient one side upward in erect position. For this study, total 20 subject with no history of neurological or psychiatric illness, were recruited for examinations. They consisted of 13 mails and 7 femails, Statistic group analysis was performed with ANOVA test. Score of the evaluation of the expects were $30^{\circ}$ at $0.40{\pm}0.499$, $35^{\circ}$ at $1.34{\pm}0.657$, $40^{\circ}$ at $1.84{\pm}0.573$, $45^{\circ}$ at $0.76{\pm}0.649$, and they were significant(P<0.05). The degree of $40^{\circ}$ views were shown to yield good quality shoulder oblique images.