• Title/Summary/Keyword: Rotation Angle

Search Result 1,348, Processing Time 0.03 seconds

Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters (고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구)

  • Lee, Hyeon Ju;Nah, Hwan Seon;Kim, Kang Seok;Kim, Jin Ho;Kim, Jin Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Because the torque control method, which is also caled the clamping method in domestic construction sites, is affected by a variation of the torque coefficient, quality control of the torque coefficient is essential. This study was focused to evaluate the effects of several environmental factors and errors when installing bolts while tightening high-strength bolts. Conditioning environmental parameters include wet, rusty and exposure-to-air-only conditions. In addition, because of errors in workability such as instalation of two washers, upset washers are selected. During the tests, torque, torque coefficient, tension and angle of nut rotation were obtained using a bolt testing machine. Test specimens of four types of bolts (High-Strength Hexagon bolt on KS B 1010, Torque Shear Bolt on KS B 2819, High-Strength Hexagon bolt coated with zinc, and ASTM 490 bolt) were recomended. Based on test results, the tightening characteristics subjected to environmental parameters were investigated and compared with the results in normal condition.

A Inclined Slot-excited Circular Plasma Source with a Cusp Magnetic Field

  • You, H.J.;Kim, D.W.;Koo, M.;Jang, S.W.;Jung, Y.H.;Lee, B.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.435-435
    • /
    • 2010
  • A inclined slot-excited plasma source is newly designed and constructed for higher flux HNB(Hyperthermal Neutral Beam) generation. The present source is different from the vertical SLAN(SLot ANtenna) sources [1] in two aspects. One is that the slots are inclined, and the other is that the magnetic field is configured to a cusp type. These modifications are intended to make the source plasma operated in sub-milli-torr pressure regime and as thin as possible, both of which is to get higher HNB flux by decreasing the re-ionization rate of the reflected atoms from the neutralizer [2]. The plasma is generated in a quartz tube of internal diameter 170 mm enclosed in a aluminum application chamber of larger diameter 250 mm. The microwave power is fed to the plasma chamber by 8 inclined slots cut into the application chamber wall. The slots are coupled the chamber to a WR280 waveguide wound around it to form a ring resonator. In order to make two slots $\lambda_g/2$ apart in phase, the adjacent slots are rotated in opposite directions. The rotation angle of the slots are set to $60^{\circ}$ from the chamber axis. Between the quartz chamber and the aluminum cylindrical chamber 8 NdFeB magnets are equally spaced and fixed to form the cusp magnetic field confinement and ECR (Electron Cyclotron Resonance) field. In this presentation, the magnetic and electromagnetic simulations, and the measured plasma parameters are given for both the inclined and the vertical slot-excited plasma sources. We also discuss how the sources can be tailored to suit better-performing HNB sources.

  • PDF

Study on Three-Dimensional Curved-Surface Machining Using Industrial Articulated Robot (다관절 로봇을 이용한 3차원 곡면가공 방안에 관한 연구)

  • Jung, Chang-Wook;Noh, Tae-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1071-1076
    • /
    • 2011
  • NC machines are generally used for machining operations because of their position accuracy, path accuracy, and machining reaction force. However, some NC machines require a very large space and are expensive. Recently, industrial articulated robot arms with large handling capability and wrist torque have been developed and the corresponding sensor technology has been improved. A machining robot for three-dimensional large curved objects was developed on the basis of an automatic-path-generation method. A self-position-compensation method with a laser displacement sensor was adopted for the six-axis robot developed, because the large articulated robot arms had poor position accuracy. An automatic-path-generation method using specific points was adopted to reduce the number of teaching points and time. In order to determine the proper machining conditions, various machining conditions such as tool rotation speed, cutting angle, cutting depth, and tool moving speed, were evaluated.

Stability Test of Artificial Joint for Hip Joint (고관절용 인공관절 시스템의 안정성 평가)

  • Seok, Sung-Fie;Park, Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1033-1039
    • /
    • 2012
  • Artificial joints are used when joints lose their function because of either the destruction or damage of the composing bones of the joints. To evaluate the primary stability of a femur-implant system, the relative displacement caused by a repeated load is measured immediately after the insertion of the artificial joint. For more accurate stability evaluation, the accurate measurement of the penetration displacement of the artificial joint to the bone and the rotation angle of the artificial joint is essential. In this study, to evaluate the primary stability of the femur-implant system, we propose a new relative displacement measurement method. By using this new method, we comparatively evaluate the primary stability for various surgical methods and the varying stiffness of the cadaver femur-implant itself.

Dynamic Serviceability Estimation of the Simple Railway Bridge with PSC I Girder (PSC I형 단순 철도교량의 동적사용성 평가)

  • Kang, Sung-Hoo;Choi, Tae-Geun;Park, Sun-Joon;Kim, Sung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • In this study, dynamic serviceability of PSC, PreStressed Concrete, simple railway bridge with 25m span was estimated. All of the high speed and general train loads were considered at estimation. Natural frequency is estimated about 8Hz and includes within optimum natural frequency extent of the railway bridge. Also, the bridge was detected that resonance occurrence possibility does not exist. When travel the Moogunghwa train, acceleration response was measured to 0.43g that exceed limitation value 0.35g. Also, rotation angle of girders end did not satisfy design standard of railway bridge for high speed train, but impact coefficient and deflection satisfied design standard. As a result, that railway bridge was detected that is securing dynamic safety and serviceability partially, but methods to decrease vibration acceleration response are required.

Analysis and Experiment on the Tape Spring Hinges for CubeSat Missions (큐브위성 임무를 위한 테이프 스프링 힌지의 비선형 거동 분석 및 실험)

  • Yoo, JeongUk;Im, Byeong-Uk;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.712-719
    • /
    • 2019
  • This paper explores an implementation of finite element analysis and experiment in the design process of a tape spring hinge used for various CubeSat missions. Tape spring hinges consist of short-length hardened-steel strips with one-sided curvature, and thus the behavior is subject to large deformation with unpredicted non-linearity. Precise dimensions of a commercial tape spring are traced by the use of high-resolution digital camera, and thin-shell FEM analysis is conducted using ABAQUS program. Based on the rotation-moment analysis suggested in previous studies, parametric analysis is conducted by adjusting the contributing factors such as strip thickness and the subtended angle of the cross section. Finally the behaviors are investigated by both analytical and non-linear finite element methods, and the results are compared with the simple measurements. Further studies suggest a possible application in dynamic characteristics of hinges during CubeSat operations.

The Experimental Investigations of the Big Size Holographic Screen in the Autostereoscopic Displays

  • Son, J. Y.;Choi, Y. J.;Bahn, J. E.;Bobrinev, V.-I.
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.55-59
    • /
    • 2001
  • Results of an experimental study of possible ways to extend the capabilities of a big size transmission type holographic screen are presented. Different approaches to the problem of making a big size screen have been considered and tested experimentally. Up to 60$\times$80 $\textrm{cm}^2$ screens have been recorded on a single photographic plate VRP-M. By attaching a mirror behind the screen, the reflection mode of operation has been obtained. In this arrangement some additional peculiarities appear in the screen, which can be used to extend the screen capabilities. The first possibility is to increase the screen size by mosaicking the subscreens in the reflection mode of operation. Screens of 120$\times$80 $\textrm{cm}^2$ and 180$\times$40 $\textrm{cm}^2$ have been obtained by proper alignment of 60$\times$40 $\textrm{cm}^2$ subscreens. The second possibility is to move the viewing Bone by rotation of the screen together with the mirror and thereby realize by the eye-tracking capability. Methods of increasing vertical size of the viewing zone have been considered. Along with the multi-exposure method, which was considered in previous papers, addition of the vertical diffuser with the optimized scattering angle has been tested experimentally. The vertical size of the viewing zone has been increased by up to 10-15 cm. Another method consists of usage of a diffraction grating with vertical dispersion to solve the same problem.

Relationship between Thoracic Kyphosis and Selected Cardiopulmonary Parameters and Respiratory Symptoms of Patients with Chronic Obstructive Pulmonary Disease and Asthma

  • Aweto, Happiness Anulika;Adodo, Rachel Ilojegbe
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2021
  • Background: Patients with advanced asthma and chronic obstructive pulmonary disease (COPD) have postural deviations such as thoracic hyperkyphosis, forward shoulder posture (FSP) due to an increase in head and cervical protraction, reduced shoulder range of motion and a corresponding increase in scapula elevation and upward rotation. Unlike congenital vertebral kyphosis that are permanent and rigid deformities with bony and other structural deformations which cause respiratory impairment, these deformities in these patients may be more flexible. Since the thoracic hyperkyphosis has been implicated as having adverse health consequences it is necessary to evaluated the relationship between thoracic kyphosis and cardiopulmonary functions of patients with COPD and asthma. Methods: It was a cross-sectional analytical study. Eighty-four eligible patients with COPD and asthma were recruited from the Respiratory Unit, Department of Medicine, Lagos University Teaching Hospital (LUTH), and basic anthropometric parameters, pulmonary parameters, cardiovascular parameters, thoracic kyphosis (Cobb) angle and presence of respiratory symptoms of participants were assessed. Data was analyzed using SPSS version 20. Results: There was no significant correlation between the thoracic kyphosis and selected pulmonary parameters (Forced Expiratory Volume in one second (FEV1, p=0.36), Forced Vital Capacity (FVC, p=0.95), Peak Expiratory Flow Rate (PEFR, p=0.16), Thoracic expansion (TE, p=0.27)/cardiovascular parameters (Systolic Blood Pressure (SBP, p=0.108), Diastolic Blood Pressure (DBP, p=0.17) and Pulse Rate (PR, p=0.93) as well as the respiratory symptoms (SGRQ scores, p=0.11) in all subjects. Conclusion: There was no relationship between thoracic kyphosis and selected pulmonary/cardiovascular parameters as well as respiratory symptoms in patients with COPD and asthma.

Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing (궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건)

  • Lee, Hyoung-Tae;Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.

Development of distance sensor module with object tracking function using radial arrangement of phototransistor for educational robot (교육용 로봇을 위한 포토트랜지스터의 방사형 배열을 이용한 물체추적기능을 갖는 거리 센서 모듈 개발)

  • Cho, Se-Hyoung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.922-932
    • /
    • 2018
  • Radial distance sensors are widely used for surveying and autonomous navigation. It is necessary to train the operation principle of these sensors and how to apply them. Although commercialization of radial distance sensor continues to be cost-effective through lower performance, but it is still expensive for educational purposes. In this paper, we propose a distance sensor module with object tracking using radial array of low cost phototransistor which can be used for educational robot. The proposed method is able to detect the position of a fast moving object immediately by arranging the phototransistor in the range of 180 degrees and improve the sensing angle range and track the object by the sensor rotation using the servo motor. The scan speed of the proposed sensor is 50~200 times faster than the commercial distance sensor, thus it can be applied to a high performance educational mobile robot with 1ms control loop.