• Title/Summary/Keyword: Rotating moment

Search Result 124, Processing Time 0.023 seconds

Optimal Design Analysis of Driving Link-Mechanism and Development of Control Performance Estimation Program for Unbalance Heavy-Load Elevation Driving System; (구동 링크기구 최적설계 분석 및 불균형 대부하 고저 구동/제어 성능추정 프로그램 개발)

  • 최근국;이만형;안태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.614-617
    • /
    • 1995
  • The unbalance heavy-load elevation driving systems are composed of rotating link-mechanism and hydraulic cylinder which actuates elevation and compensates the static unbalance moment of supporting mechanism. Control and compensation of gun driving is very difficult because these mechanism imply highly nonlinearities due to hydraulic fluid characteristics and mechanical rotation of link-mechanism. In this study, through the analysis of manufactured link-mechanism, the optimal link-mechanism design of the elevating system is suggested. Also to estimate the control performance of the unbalance heavy-load elevation servo-control driving system, modeling and simulation of the system are carried out. To prove the reliability of performance estimation program,simulation results are compared with the experimental results. Both results are similar, therefore this program will be helpful to study the control performance improvement of the system.

  • PDF

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation

  • 이용중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.164-169
    • /
    • 2003
  • The purpose of this study is to develop a practical image inspect ion system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from 30$^{\circ}$ to 45 simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment, the image inspect ion system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automat ion when the image inspect ion system developed from this research is applied to the product ive field.

  • PDF

Diagnosis of Gear Fault Using Wigner Higher Order Distribution (고차 위그너 분포 해석을 이용한 기어의 진단 분석)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1127-1132
    • /
    • 2000
  • Impulsive acoustic and vibration signals within rotating machinery are often induced by irregular impacting. The detection of these impulses can be useful for fault diagnosis purposes. Recently there has been an increasing trend towards the use of higher order statistics for fault detection within mechanical systems based on the observation that impulsive signals tend to increase the kurtosis values. This paper considers the use of the third and fourth order Wigner moment spectra, called the Wigner bi- and tri- spectra receptively, for analysing such signals. Expressions for the auto-and cross-terms in these distributions are presented and discussed. It is shown that the Wigner trispectrum is a more suitable analysis tool and it performance is compared to its second order counterpart for detecting impulsive signals. These methods are also applied to measured data sets from an industrial gearbox.

  • PDF

A Study on Vibration Reduction of an Industrial Chop Saw in Operation (산업용 고속절단기의 기동 시 충격완화에 대한 연구)

  • Kim, Doo-Hwan;Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.892-898
    • /
    • 2009
  • In this paper, a cause of a shock of an industrial chop saw is identified by experimental method and the shock is reduced by structural modifications. For the shock identification, vibration signals are measured by an accelerometer when the chop saw operates. Through some experiments, it is found that the shock is occurred by a slip between a spindle and a wheelwasher of the chop saw. To reduce the shock, One method is to lower the mass moment of inertia of the wheelwasher and the angular rotating acceleration of it. Another method is to broaden a contact area between the wheelwasher and the spindle. After designing and analyzing the wheelwasher and the spindle mechanically, a prototype of them is built. With the manufactured prototype, the performances and design requirements of them are experimentally verified by the response measurements.

Design of a Fuzzy Compensator for Balancing Control of a One-wheel Robot

  • Lee, Sangdeok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.188-196
    • /
    • 2016
  • For the balancing control of a one-wheel mobile robot, CMG (Control Moment Gyro) can be used as a gyroscopic actuator. Balancing control has to be done in the roll angle direction by an induced gyroscopic motion. Since the dedicated CMG cannot produce the rolling motion of the body directly, the yawing motion with the help of the frictional reaction can be used. The dynamic uncertainties including the chattering of the control input, disturbances, and vibration during the flipping control of the high rotating flywheel, however, cause ill effect on the balancing performance and even lead to the instability of the system. Fuzzy compensation is introduced as an auxiliary control method to prevent the robot from the failure due to leaning aside of the flywheel. Simulation studies are conducted to see the feasibility of the proposed control method. In addition, experimental studies are conducted for the verification of the proposed control.

Impact Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses in the Opening Phase

  • Cheon, Gill-Jeong;Chandran, K.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.235-244
    • /
    • 1992
  • In this paper, fluttering behavior of mechanical monoleaflet tilting disc heart valve prostheses during the opening phase was analyzed taking into consideration the impact between the occluder and the guiding strut at the fully open position. The motion of the valve occluder was modeled as a rotating system, and equations were derived by employing the moment equilibrium principle. Forces due to lift, drag, gravity and buoyancy were considered as external forces acting on the occluder. The 4th order Runge-Kutta method was used to solve the governing equations. The results iimonstrated that the occludes reaches steady equilibrium position only after damped vibration. Fluttering frequency varies as a function of time after opening and is in the range of 8-84 Hz. Valve opening appears to be affected by the orientation of the valve relative to gravitational force. The opening velocities are in the range of 0.65-1.42m/sec and the dynamic loads by impact of the occludes and the strut are in the range of 90-190 N.

  • PDF

Dynamic Behavior Analysis of Mechanical Bileaflet Heart Valve Prosthesis (기계식 이엽심장밸브의 동적거동 해석)

  • 천길정
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.149-156
    • /
    • 1991
  • In this paper, fluttering behavior of mechanical bileaflet heart valve prosthesis was analyzed taking into consideration of the impact between valve plate and stopper Vibration system of the valve was modeled as a rotating system, and equations are induced by moment equilibrium equations. Lift force, drag force, gravity and buoyancy were considered as external forces acting on the valve plate/ The 4th order Runge-Kutta method was used to solve the equations. Valve plate does not come to the static equilibrium position at a stretch, but come to that position after under damping vibration. Damping ratio increases as the cardiac optput increases, and the mean damping ratio is in the range of 0.16~40.25. Fluttering frequency does not have any specific value, but varies as a function of time. It is in the range of 10~40Hz. Valve opening appears to be affected by the orientation of the of the valve relative to gravitational forces.

  • PDF

Crabbing Test of a 3m Ferry Model (3m Ferry 모형선의 Crabbing 시험)

  • 신현경;이형락
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.40-46
    • /
    • 2004
  • In this paper, one of the harbour manoeuvring tests is described. its goal is to investigate the so-called crabbing performance of ships. By crabbing is meant the ability of the vessel to move sideways with the use of her own manoeuvring devices like propellers, rudders, transverse thruster, etc. The crabbing model tests were carried out in the Ocean Engineering Wide Tank, University of Ulsan(UOU) to measure the transverse forces and yawing moments by the transverse thruster alone and the propeller-rudder arrangement in combination with the bow thruster. The comparison between UOU crabbing test results and data measured at one of foreign research institutes showed a little gap due to different rotating conditions of controllable pitch propellers.

Inertia Identification Algorithm for Spindle Motor of Machine Tool (공작기계 주축용 스핀들 전동기를 위한 관성추정알고리즘)

  • Jeong, Byung-Hwan;Choe, Gyu-Ha;Choi, Gyeong-Jin;Lee, Tai-Ree
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.43-45
    • /
    • 2007
  • This Paper proposes a simple identification method of the moment of inertia for high performance spindle motor of machine tool. It uses the dynamic equation of a simple mechanical system, the torque reference of a speed controller, and the actual rotating speed of machine. The identified inertia can be for auto-tuning of the gains in the speed controller. The effectiveness of the proposed method is proved by the computer simulation.

  • PDF

Analysis of Labelling Efficiency According to Differences of Rotating Time in a Asan Medical Center (AMC) RBC Labelling Method (서울아산병원의 적혈구 표지 방법에서 교반 시간 차이에 따른 표지 효율의 분석)

  • Chung, Eun-Mi;Jung, Woo-Young;Ryu, Jae-Kwang;Shim, Dong-Oh;Lee, Yeong-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.90-93
    • /
    • 2010
  • Purpose: In our nuclear medicine department, we suggested AMC RBC labeling method improved by modifying a part of existing modified in-vitro method to raise the efficiency of $^{99m}Tc$-RBC labeling. However, it needs to be more additional time and efforts than existing modified in-vitro method because the AMC RBC labeling method has to carry out the centrifugal separation process for 3~5 minutes. Therefore, in this study, we conducted researches to aim to maintain stable labeling effects and supplement a problem about additional time by reducing rotating time when labeling $^{99m}Tc$-RBC. Materials and Methods: This research has been conducted the object of 30 patients who examined study using $^{99m}Tc$-RBC and agreed to this research at our hospital from May 2009 to September 2009. We made 4 blood samples which consisted of ACD 1 cc along with 5 cc blood from each patient and used the AMC RBC labeling method. At this moment, each labeling efficiency was calculated by different rotating time 5 min, 10 min, 15 min, and 20 min and then we compared differences. Results: As a result, When comparing the $^{99m}Tc$-RBC labeling method efficiency by using the AMC RBC labeling method which differents from rotating time, each labeling efficiency were $92.3{\pm}5.0%$ in 5 min, $95.9{\pm}5.0%$ in 10 min, $97.4{\pm}4.9%$ in 15 min and $97.7{\pm}4.8%$ in 20 min. We analyzed differences of the labeling efficiency from change of rotating time by using an one-way ANOVA and verified that in Duncan method. There was relatively efficiency low in 5min rotating time and no statistically significant change in over. Conclusions: When comparing a existing method, the AMC RBC labeling method which goes through the centrifugal separation process again offers more favorable condition to combine RBC with $^{99m}TcO4^-$ by eliminating an plasma ingredient. When using the modified in-vitro method, we have almost 20 min to rotate to acquire stable labeling efficiency. But, when using the AMC RBC labeling method, we acquire labeling efficiency well what we want within only 10 min to rotate. Decrease of rotating time can complement the AMC RBC labeling method which goes through the centrifugal separation process again and also provide more rapid study such as G-I bleeding study due to fast labeling.

  • PDF