• 제목/요약/키워드: Rotating Seat

검색결과 12건 처리시간 0.021초

자동차 시트 틸팅 각도에 따른 기어박스 마찰소음 영향도 (Tilting Effect of Automotive Seat System on Squeak Noise)

  • 강재영
    • 한국소음진동공학회논문집
    • /
    • 제20권6호
    • /
    • pp.577-582
    • /
    • 2010
  • The squeak propensity in the gear box of an automotive seat system is investigated analytically. The mating parts in the gear box are the lead screw and the nut, where the friction stresses are exerted on the thread of the screw. The lead screw is modeled as a circular beam allowing the bending and torsional vibrations. In the system, the lead screw converts rotating to translating motion so that it moves the automotive seat slightly tilted on the floor. The tilting angle is considered one major parameter in this study. Therefore, the equations of motion associated with the non-conservative friction force are derived with the inclusion of the tilting angle. It is found that the squeak noise corresponds to the several bending modes of the lead screw and its propensity is increased by the tilting angle of the seat.

헬리콥터 동체의 진동 예측 (Vibration Prediction of Helicopter Airframe)

  • 윤철용;김도형;강희정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Ergonomic Evaluation and Improvement of Bus Seat Armrest Design

  • Jung, Hayoung;Lee, Seunghoon;Kim, Moonjin;Choi, Hoimin;You, Heecheon
    • 대한인간공학회지
    • /
    • 제36권2호
    • /
    • pp.69-86
    • /
    • 2017
  • Objective: The present study is intended to develop an improved bus seat armrest design by evaluating various bus armrest designs from ergonomic aspects. Background: An ergonomic armrest design which considers the sitting postures and body shapes of passengers can improve the convenience and comfort of a bus seat. Method: Subjective satisfaction of each of five design dimensions (length, width, height from seatpan, shape, and angle) was evaluated for seven bus seat armrest designs in various sizes and shapes by 58 participants (28 males and 33 females) using a 7-point scale (1: very dissatisfied, 4: neutral, and 7: very satisfied). Improved bus seat armrest designs adjustable in length and rotatable to the left or right (sliding and rotating armrest, SRA) with a concave, flat, or convex shape of the upper part were developed by considering the preferred design features and the body size and shape in sitting posture and needs of passengers and then compared with a conventional armrest. Results: A bus seat armrest with a wide width (40~50mm), a long length (360mm), a lower height (213mm), and a curved shape was found significantly preferred in terms of comfort. The proposed armrest designs (SRA-convex, SRA-flat, and SRA-concave) improved satisfaction by 46~62% for length suitability, 184~216% for width suitability, 205~214% for angle suitability, 138~181% for contact area suitability, and 49~64% for height suitability, 138~174% for comfort, and 93~111% for overall satisfaction. Conclusion: The preferred design features and passengers' needs of bus seat armrest were identified and the SRA designs were recommended for better usability. Application: The ergonomic design process of bus seat armrest employed in the present study can be applied to designing armrests in various vehicles for better convenience and comfort.

자율주행 자동차용 전동회전시트 상부회전판의 핫스탬핑 성형에 관한 연구 (Study on Hot Stamping of the Rotating Module Upper Plate for an Autonomous Vehicle Seat)

  • 육형섭;편종권;서창희;오상균;권태하;김병기;박동규
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.44-49
    • /
    • 2021
  • Seats in autonomous vehicles must be able to rotate to fully utilize the interior space. Generally, ultra-high strength steel is used for the rotation module because it should have high strength and high rigidity. In addition, the rotating parts are difficult to form because they have complex shapes. In this study, the upper plate of the rotating module, whose complex shape makes it difficult to form, was formed by applying the hot stamping method. The drawing method and the form-drawing method, which are generally used to form components of complex shapes, were compared. We showed that the form-drawing method increased the degree of freedom of the material flow to improve the formability, thus enabling the forming of the plate. In addition, the die and blank shapes were found to be important factors in determining the success of the hot stamping. The validity of the analysis results was confirmed through forming analysis and experiments.

소수력 터빈용 복수 기계평면시일의 접촉거동에 관한 유한요소해석 (Finite Element Analysis for the Contact Behavior in Double-Type Mechanical Face Seals Used for Small Hydro Power Turbine)

  • 김청균;강현준
    • Tribology and Lubricants
    • /
    • 제21권5호
    • /
    • pp.201-208
    • /
    • 2005
  • This paper presents the FEM analysis on the contact behavior characteristics of mechanical face seals in a small hydro-power turbine. Especially, the axial displacement and contact normal stress between a seal ring and a seal seat of a primary sealing unit have been analyzed as functions of rotating speed of a hydro-turbine, sealing gap, water and cooling fluid temperature. Those are strongly related to a leakage of water and wear between a seal ring and a seal seat. The FEM computed results present that the rotating speed of a hydro-turbine may be kept less than 800 rpm, and the sealing gap in a primary sealing unit is restricted $0.5\~5$. The coolant temperature in which is most influential parameter to the contact behaviors of a sealing unit may be kept less than $15^{\circ}C$ for a safe operation of a sealing unit without a leakage and wear.

가솔린 직분식 엔진의 연소실 개발을 위한 분무 및 유동장 해석 (Analysis of Spray and Flow Fields for Development of Spark-ignited Direct Injection Engine)

  • 최규훈;박종호;이내현
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.202-209
    • /
    • 1998
  • For development of SDI(Spark-ignited Direct Injection) engine, stratified mixture formation with adequate strength at spark plug was required in wide range of engine operating conditions. So, spray structure under high ambient pressure and spray distribution after impingement on piston bowl in motoring engine was visualized by using laser equipments. Also, incylinder bulk flow structure was measured by using PIV (Paiticle Image Velocimetry) system. Counter-rotating tumble port and bowl piston was found effective to conserve bulk motion directed to spark plug in compression stroke. In addition, mask attached near valve seat in intake port was proposed to attenuate conventional tumble component and enhance counter-rotating tumble component.

  • PDF

디젤엔진의 밸브회전에 미치는 밸브트레인 설계변수들의 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Valve Train Design Parameters on the Diesel Engine Valve Rotation)

  • 김도중;정영종;이중희
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper we present the effects that valve train design parameters and operating conditions have on the valve rotation properties of a diesel engine. Rotation of intake and exhaust valves are very closely related to the long term durability of diesel engines. of the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. Because the rated speed of a diesel engine is relatively lower than that of a gasoline engine, the operating condition of a diesel engine produces tough environment for valve rotation. Therefore, the valve rotation is an important problem which should be solved in the early stage of engine development. In this study, we developed a new technique to measure the valve rotation and shaking motion simultaneously using three proximity sensors. Valve train rotating properties of a diesel engine were measured under various engine operating conditions.

Development of Life Test Equipment with Real Time Monitoring System for Butterfly Valves

  • Lee, Gi-Chun;Choi, Byung-Oh;Lee, Young-Bum;Park, Jong-Won;Nam, Tae-Yeon;Song, Keun-Won
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.40-46
    • /
    • 2017
  • Small valves including ball valves, gate valves and butterfly valves have been adopted in the fields of steam power generation, petrochemical industry, carriers, and oil tankers. Butterfly valves have normally been applied to fields where in narrow places installing the existing valves such as gate valves and ball valves have proven difficult due to the surrounding area and the heavier of these valves. Butterfly valves are used to control the mass flow of the piping system under low pressure by rotating the circular disk installed inside. The butterfly valve is benefitted by having simpler structure in which the flow is controlled by rotating the disc circular plate along the center axis, whereas the weight of the valve is light compared to the gate valve and ball valve above-mentioned, as there is no additional bracket supporting the valve body. The manufacturing company needs to acquire the performance and life test equipment, in the case of adopting the improving factors to detect leakage and damage on the seat of the valve disc. However, small companies, which are manufacturing the industrial valves, normally sell their products without the life test, which is the reliability test and environment test, because of financial and manpower problems. Furthermore, the failure mode analysis of the products failed in the field is likewise problematic as there is no system collecting the failure data on sites for analyzing the failures of valves. The analyzing and researching process is not arranged systematically because of the financial problem. Therefore this study firstly tried to obtain information about the failure data from the sites, analyzed the failure mode based on the field data collected from the customers, and then obtained field data using measuring equipment. Secondly, we designed and manufactured the performance and life test equipment which also have the real time monitoring system with the naked eye for the butterfly valves. The concept of this equipment can also be adopted by other valves, such as the ball valve, gate valve, and various others. It can be applied to variously sized valves, ranging from 25 mm to large sized valves exceeding 3000 mm. Finally, this study carries out the life test with square wave pressure, using performance and life test equipment. The performance found out that the failures from the real time monitoring system were good. The results of this study can be expanded to the other valves like ball valves, gate valves, and control valves to find out the failure mode using the real time monitoring system for durability and performance tests.

밸브 양정의 연속 변화에 의한 준정상 유동 조건에서의 엔진 실린더헤드 유량계수 특성 (Characteristics of Flow Coefficients in an Engine Cylinder Head with a Quasi-steady Flow Condition by Continuous Variation of the Valve Lift)

  • 오대산;이충훈
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.22-27
    • /
    • 2010
  • Flow Coefficients of intake port in an engine cylinder head were measured by a newly designed flow rig. In measuring the flow coefficient with traditional method, the valve lift was manually varied by technician with adjusting a micrometer which is directly connected to the intake valve of the cylinder head. The cam shaft of the cylinder head is directly rotated by a step motor and the valve lift was automatically varied with cam shaft profile in the newly designed flow rig. The measurement of the flow coefficient was automated by rotating the cam shaft with the step motor. Automatic measurement of the flow coefficient could be safely measured by separating a technician from the noise and vibration of the traditional flow rig. Also, the automatic measurement of the flow coefficient reduce the measurement time and provide meaningful statistical data.

차량용 휠체어 이송수납메커니즘의 개발에 관한 연구 (Study on Development of Wheelchair Transfer-Storage Mechanism for Car)

  • 임구;김용석;레콴환;정영만;오동관;오지우;여찬호;양순용
    • 대한기계학회논문집A
    • /
    • 제38권10호
    • /
    • pp.1109-1116
    • /
    • 2014
  • 본 연구에서 제안된 차량용 휠체어 수송메커니즘은 크게 이송메커니즘과 수납메커니즘으로 구성된다. 여기서 휠체어 이송메커니즘은 매니퓰레이터로 구성되며, 차량의 루프에 설치되어 운전석에서 트렁크의 위치까지 휠체어를 이송하는 기능을 한다. 휠체어 수납메커니즘은 리프팅 호이스트로 구성되며, 차량의 트렁크에 설치되어 이송된 휠체어를 트렁크 내부로 수납하고 안전하게 고정하는 기능을 한다. 본 연구에서는 휠체어 이송메커니즘의 조건을 고려한 매니퓰레이터의 방식선정을 위해 수직방식, 수평방식, 텔레스코픽방식 등에 대하여 분석하고 검토하여 하중지지에 강하고 수납보관에 유리한 텔레스코픽방식을 선정하여 적용하였다. 또한 휠체어 수납메커니즘에서는 슬라이드 레일과 리프트와이어에 의한 슬라이드 호이스트방식과 웜기어와 링크로 구성된 회전메커니즘에 의한 회전링크 호이스트방식에 대하여 분석하고 검토하여 트렁크 공간 활용에 유리한 슬라이드 호이스트방식을 선정하여 적용하였다. 본 연구에서 제안된 차량용 휠체어 이송메커니즘은 기존의 휠체어 이용자 이동지원을 위한 차량용 휠체어 이송시스템의 단점을 해소하고 국내 장애인복지차량 구조에 부합하도록 제안하였다.