• 제목/요약/키워드: Rotating Ring

검색결과 119건 처리시간 0.021초

An Experimental Investigation of Yarn Tension in Simulated Ring Spinning

  • Tang Zheng-Xue;Wang Xungai;Fraser W. Barrie;Wang Lijing
    • Fibers and Polymers
    • /
    • 제5권4호
    • /
    • pp.275-279
    • /
    • 2004
  • Yarn tension is a key factor that affects the efficiency of a ring spinning system. In this paper, a specially constructed rig, which can rotate a yam at a high speed without inserting any real twist into the yarn, was used to simulate a ring spinning process. Yarn tension was measured at the guide-eye during the simulated spinning of different yarns at various balloon heights and with varying yarn length in the balloon. The effect of balloon shape, yarn hairiness and thickness, and yam rotating speed, on the measured yarn tension, was examined. The results indicate that the collapse of balloon shape from single loop to double loop, or from double loop to triple etc, lead to sudden reduction in yarn tension. Under otherwise identical conditions, a longer length of yarn in the balloon gives a lower yarn tension at the guide-eye. In addition, thicker yarns and/or more hairy yarns generate a higher tension in the yarn, due to the increased air drag acting on the thicker or more hairy yarns.

The Study on the Composition of the Encoder for Driving the High Speed Spindle Motor (고속 스핀들 전동기 구동을 위한 자기식 엔코더 구성에 관한 연구)

  • Choi Cheol;Kim Cheol-U;Lee Sang-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제54권5호
    • /
    • pp.253-259
    • /
    • 2005
  • Magnetic encoder with relatively low pulse per rotation is generally used for detecting speed of the high-speed rotating machine. It is due to the fact of the mechanical problems of vibration and bearing stiffness and also the limit of maximum output pulse of the mounted encoder. The magnetic encoder is divided into two types, that is, toothed gear-wheel method and magnetic wheel method according to the shape of the rotation disk. In case of detecting speed by the tooth gear-wheel, the encoder itself can be acted as the additional inertia where the number of tooth determining the output pulse and the width of the wheel detecting the change of the magnetic flux density are relatively enough large considering the volume of the rotating machine. While the magnetic wheel method has the limit of the magnetizing number of the ring magnet, there is relatively few, if nv, the influence of inertia on the machine. In this paper, it is proposed a simple magnetic wheel encoder suited for the high speed rotating machine and the method of signal processing and the output characteristics are examined through the V/F operation of max 48,000(rpm) and 2.4(KW) spindle motor.

Gravitational Instability of Rotating Isothermal Rings

  • Moon, Sanghyuk;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제41권2호
    • /
    • pp.61.2-61.2
    • /
    • 2016
  • Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent eld method, we first construct their equilibrium sequences specified by two parameters: ${\alpha}$ corresponding to the thermal energy relative to gravitational potential energy, and $R_B$ measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller ${\alpha}$, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency ${\Omega}$ and central density ${\rho}_c$. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when ${\Omega}$ exceeds the critical value. The critical angular frequency is found to be almost constant at $0.7(G{\rho}_c)^{1/2}$ for ${\alpha}$ > 0.01 and increases rapidly for smaller ${\alpha}$. We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  • PDF

A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers (Machining Center의 2차원 원호보간정밀도 진단 System의 개발)

  • Kim, Jeong-Soon;Namgung, Suk;Tsutusmi, Masacmi
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제10권2호
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

EVOLUTION OF SELF-GRAVITATING GAS DISKS UNDER THE INFLUENCE OF A ROTATING BAR POTENTIAL

  • YUAN CHI;YEN DAVID C. C.
    • Journal of The Korean Astronomical Society
    • /
    • 제38권2호
    • /
    • pp.197-201
    • /
    • 2005
  • It is well known that a rotating bar potential can transport angular momentum to the disk and hence cause the evolution of the disk. Such a process is particularly important in disk galaxies since it can result in fuelling AGNs and starburst ring activities. In this paper, we will present the numerical simulations to show how this mechanism works. The problem, however, is quite complicated. We classify our simulations according to the type of Lindbald resonances and try to single out the individual roles they play in the disk evolution. Among many interesting results, we emphasize the identification of the origin of the starburst rings and the dense circumnuclear molecular disks to the instability of the disk. Unlike most of the other simulations, the self-gravitation of the disk is emphasized in this study.

Mechanistic Studies on the Formation of Soluble Intermediate during the Electrochemical Nucleation of Lead Dioxide

  • Hwang Euijin;Cho Keunchang;Kim Ho Il;Kim Hasuck
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1054-1058
    • /
    • 1994
  • Different behavior on the formation of soluble intermediate was observed depending on the substrate employed during the nucleation of lead dioxide from plumbous ion using a rotating ring-disk electrode. It was found that no soluble intermediate was formed at glassy carbon electrode, while the presence of soluble intermediate could be detected at platinum substrate. From the different anodic behavior of two substrates, the formation of a probable Pb(Ⅲ) soluble intermediate was suggested. A most probable nucleation mechanism at the platinum substrate involving a second order chemical reaction was derived on the basis of rotating disk electrode experiments.

A Study on the Development of Ship's Stern Tube Sealing System(I) -Based on Lip Seals- (선미관 밀봉장치 개발에 관한 연구 (I) - 맆 시일을 중심으로-)

  • 김영식;전효중;왕지석;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제15권4호
    • /
    • pp.29-45
    • /
    • 1991
  • Lip type stern tube sealing systems have used in almost all the middle or large ships which are being constructed in these days. It seems that the pressure fluctuation of the seal ring interspace, the cross-section profile and the materials quality of the seal rings have great effects on the sealing fuction of this sealing system. In this paper, the mechanical movement of lip seal ring which plays the most important role in stern tube sealing system and the possibility of leakage caused by pressure fluctuation are studied by theory and experiment. Using the finite element method for the axi-symetric object which receives the torsional load, the displacement and stress analysis of the seal rings, and also the possibility of crack occurance is checked by theoretical analysis. If the force which seal ring lip periphery receives is too small, there will be the possibility of leakage caused by the pressure fluctuation of the seal ring interspace, and if this force is too large, the frictional force between the seal ring and the liner will become problematical. The possibility of leakage caused by hardening of seal ring materials and creep phenomena of tested seal rings are also examined. The trial seal rings were designed and manufactured using the program of displacement and stress analysis developed in this study and the experimental apparatus to test the trial seal rings was also designed and manufactured. This trial seal rings were fitted in the experimental apparatus which was made in the same form as an actual stern tube. The one side of this apparatus was filled with sea water and the other side of it was filled with the lubricating oil. The leakage of oil and sea water was checked and the temperature was measured, rotating the propeller shaft at the constant velocity by D.C. motor. It was proved that the trial seal rings made in Viton rubber functioned excellenty but the trial seal rings made in N.B.R. rubber had problem in its durability.

  • PDF

A Study on the Characteristics of the Oil-free Turbocharger for Diesel Engine Vehicles (디젤 엔진 차량의 무급유 터보차져의 성능 평가에 관한 연구)

  • Park, Dong-Jin;Kim, Chang-Ho;Lee, Yong-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제16권4호
    • /
    • pp.47-55
    • /
    • 2008
  • Turbocharger has a main purpose on recycling of the exhaust gas from the engine cylinder. On the basis of the facility characteristics, the turbocharger supported on floating ring bearings has some problems such as the large volume, oil supplement for lubrication and high power loss due to high operating torque. The air foil bearing has been studied as the bearing element to be able to alternate the floating ring bearing without the problems of the floating ring bearing. In this study, the air foil bearing has 2 parts; journal and thrust bearings, and the test facility consists of the engine, exhaust and intake parts. In addiction, the specification of the turbocharger follows a small turbocharger for SUV engine. The engine speed is varied from 750 (idle rpm) to 2,500 rpm and then, the rotating speed of the turbocharger rotor is accelerated from 0 to 100,000 rpm. From those experiments, the comparison between the performances of the air foil bearing and floating ring bearing is conducted and the results show that the air foil bearing has less power loss, maximum 770 watt, than the floating ring bearing, maximum 5,110 watt. This result verifies that the air foil bearing is more efficient and able to output more power under the same condition of the input power.

Measurement of the Flow Field Around a Quadcopter in Vertical Descending Flight (수직 하강 비행 조건에서의 쿼드콥터 주위의 유동장 계측)

  • Kwon, Min-Jeong;Kwon, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제46권5호
    • /
    • pp.359-367
    • /
    • 2018
  • The vortex ring state that occurs during the descending flight of a rotorcraft generates a circulating flow like a donut near the rotating surface, and it often causes a rotorcraft fall due to loss of thrust. In this paper, we have physically identified the flow field in the vortex ring state of the quadcopter, one of the types of unmanned aerial vehicles. The descending flight of the quadcopter was simulated in a 1m subsonic wind tunnel of the Korea Aerospace Research Institute(KARI) and the Particle Image Velocimetry(PIV) was used for the flow field measurement. The induced velocity in the hovering state is estimated by using the momentum theory and the test was carried out in the range of descent rate at which the vortex ring condition could be caused. The development and the direction of the vortex ring were confirmed by the measurement of the flow field according to not only the descent rate but also propeller separation distance. In addition, the results of the study show the vortex ring state can be predicted sufficiently by measuring the flow velocity around the quadcopter.

Finite Element Analysis on the Thermal Behaviors of Non-Contact Type Mechanical Seals Depending on Contacting Face Geometry (접촉면 형상에 따른 비접촉식 기계시일의 열거동 특성에 관한 유한요소해석)

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.34-41
    • /
    • 2002
  • This paper presents the contact thermal behaviors of mechanical seals depending on the contacting face geometry. Using the finite element analysis, the temperature distribution, thermal distortion and leakage have been analyzed as functions of sealing gap and rotating speed of the seal ring shaft. The FE results indicate that the inclined contacting face may be more effective and stable based on the results of thermal characteristic analysis if the seal ring has been designed with a same thermal capacity between conventional rectangular sealing faces and inclined seating surface of seal rings.