• 제목/요약/키워드: Rotating Parts

검색결과 250건 처리시간 0.02초

정밀소형회전기구의 마모해석모델에 관한 연구 (Development of Wear Analysis Model of Precision Small Rotating Device)

  • 여은구;조선형;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.355-358
    • /
    • 2003
  • Recently, micro forming process technology have been developed since the size of machine parts become the crucial factor for minimizing of products in general electronic products. Most small machine parts consist of gear and rotation axis and the wear by mechanical contact is known as the primary factor for life reduction of high precision machine part. Lots of studies for mechanical wear and friction have been reported and many researches of MEMS technology have been studied recently. But just few studies for wear of micro or milli sized machine part have teen implemented. In this research, the wear equation is suggested according to the contact shape of axial part in micro or milli sized machine part. And wear analysis model which can predict the magnitude of wear through this suggested equation with numerical analysis program.

  • PDF

회전기계의 전자기 축전류에 대한 이론 및 실험 (Theory and Experiment for Electromagnetic Shaft Current in Rotation Machinery)

  • 김재실
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.40-45
    • /
    • 1999
  • Electrical damages to critical parts in rotation machinery have caused may machinery failures and hours of costly downtime. The problem of shaft currents generated in non-electrical machines have puzzled both users and manufacturers of these machines. The main solution for preventing electro- magnetic type damage is to demagnetize all of the machinery parts, however this is costly and time consuming. Therefore a thorough investigation into the causes and physical characteristics of electro- magnetic shaft currents is needed. In this paper, the self excitation theory was developed for a simple model, and axial flux Faraday disk machine surrounded by a long solenoid. Experimental tests were conducted to investigate the physical characteristics on an electromagnetic self excitation rig. The theory showed that the directions of both the shaft rotation and the coil turns should e identical if self excitation is to occur. From the tests, the electromagnetic type shaft current had both AC and DC components occurred at all vibration frequencies. This could point to the way to detect small instabilities or natural frequency locations by monitoring shaft currents.

  • PDF

스피닝 공정에서의 스프링백 현상에 관한 연구 (Study on the Appearance Spring back of Spinning Process)

  • 박중언;이우영;최석우;나경환;김승수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.837-841
    • /
    • 2000
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method of producing parts than the other sheet metal forming process such as stamping or deep drawing. It is a point deformation process where a metal disc. cylinderical workpiece. or preform in contact with a rotating chuck is plastically deformed by axial or axial-radial Motions of a tool or roller. in this study the variation of spring back with respect to various forming roller corner radius(Rr) and angle of roller holder($\alpha$) is investigated. Good as a result will help to get more precise shape by control of spring back.

  • PDF

파로설계에 관한 소고 (A Study on the Design against Metal Fatigue)

  • 이순복
    • 한국기계연구소 소보
    • /
    • 제4권1호
    • /
    • pp.19-26
    • /
    • 1981
  • Fatigue, the birth and growth of cracks in metal parts subjected to repeated loading, has been a problem plaguing engineers since the Industrial Revolution and the advent of rotating or reciprocating machinery. Designing against metal fatigue was studied briefly in several aspects. Examples of fatigue failures were shown. Fatigue was classified by loading: uniaxial Fatigue, multiaxial fatigue, cumulative fatigue da¬mage. Fatigue design criteria were discussed: Infinite-Life Design, Safe-Life Design, Fail-Safe Design, and Damage Tolerant Design. Mitigation of notch effects by design, improvement of fatigue strength of metal parts by residual stress and surface finishing were discussed. Relative fatigue beha¬vior was studied under various environmantal conditions. Especially the effects of corrosion, temperature, fretting, and irradiation were covered.

  • PDF

500 MW급 석탄화력발전소 증기터빈축 이상진동의 해결방안 (Abnormal Vibration of the Steam Turbine Shaft in 500 MW Class Coal-fired Power Plants)

  • 안광민;유호선
    • 플랜트 저널
    • /
    • 제13권1호
    • /
    • pp.30-36
    • /
    • 2017
  • 본 연구에서는 500 MW급 석탄화력발전소 기동 중 고압 및 중압 증기터빈축 양단 베어링에서 발생한 이상진동 현상의 원인을 규명하고 해결방안을 모색하기 위하여 알려진 이론에 근거하여 분석을 수행하였다. 주파수, 진폭 및 위상각 분석결과 접촉에 의해 발생하는 진동의 전형적인 특성이 나타나 이상진동의 원인을 접촉으로 판단하였고 증기터빈을 분해하여 내부부품의 마모를 확인하였다. 이상진동을 해소하기 위하여 저속회전 및 발란싱 방법을 적용하였는데 발란싱이 저속회전보다 접촉현상 해소에 우수하였다. 따라서 본 연구와 유사한 특성의 이상진동이 증기터빈 축에서 발생할 경우 발란싱은 유력한 해결방안이 될 수 있을 것이다.

  • PDF

축류 압축기 블레이드 손상시 터빈부품에 미치는 영향 (Effects of the Damaged Axial-flow Compressor Blade on the Gas Turbine Components)

  • 강명수;윤완노;김계연
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.53-58
    • /
    • 2007
  • The ruptured blade which is rotating at high speed can damage severely the all stage compressor blades and the turbine components. If the shattered blades flow downstream inside the turbine parts, then the turbine blades and vanes can be damaged. The small parts of shattered blades which are flowed into the turbine parts pass through without any damages in the leading edge of the first stage stationary blades. Then they bump against the convex side of the leading edge of the first stage moving blades and the trailing edge of the first stage stationary blades repeatedly. The debris of shattered blades may plug the cooling holes in the turbine blades and vanes. The dent damage and the coating delamination could be also occurred by the debris of shattered blades flowed downstream inside the combustion liner and the transition piece. This paper analyzes the influence on the turbine components and the damage mechanism and characteristics in case of the damaged blade of the multiple-stage axial flow compressor.

  • PDF

축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동 (The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section)

  • 송삼홍;안일혁;이정무
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

축 단면 내 대칭 위치의 미소 원공 결함에서 발생한 피로균열 특징 (The Characteristics of Fatigue Cracks Emanating from Micro Hole Defects Located Opposite Position of the Shaft Cross Section)

  • 송삼홍;배준수;안일혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.211-216
    • /
    • 2001
  • The components with the circular cross section have the symmetric combination parts for rotating balance and the crack emanates from the symmetric combination parts. The symmetric cracks from symmetric combination parts make a decrease in the component fatigue life more than single crack. In this study, to estimate the behavior of symmetric cracks, the fatigue test was performed using rotary bending tester on the specimen with a symmetric defects in circular cross section. The material used in this study is Ni-Cr-Mo steel alloy. Under the same stress, the result from the rotary bending fatigue test turned out that the symmetric cracks made a decrease in the fatigue life by 35% more than single crack and the relation between log a and cycle ratio $N/N_f$ obtained linearly.

  • PDF

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

강관의 내면비드 제거 깊이가 하이드로포밍 성형성에 미치는 영향도 분석 (The effects of the grinding depth of the inner bead on the steel tube hydroformability)

  • 김봉준;박광수;김대현;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.239-242
    • /
    • 2005
  • In the roll forming, a flat strip is progressively deformed by feeding it through a series of rotating rolls. There are various layouts for the tube toll-forming stages. The process sequences are as follows: leveling, roll-forming, welding, bead removing, seam annealing, cooling, sizing and cutting. Electric resistance welded(ERW) tubes have been widely used for the machinery parts, especially for hydroformed automotive parts. However conventional ERW tubes do not have a high formability because of hardening of welded portion by rapid cooling. Moreover the decrease in thickness of the welded portion during the grinding of the inner and outer bead may reduce the formability of the tube. In case of applying the tubular parts without grinding the bead, the flow of the fluid can be prevented due to the turbulent flow induced by the inner bead. In attempt to determine the optimal bead grinding amount in the roll forming process, in the present paper, the effects of the removal depth and width of the inner beads on the hydroformability are analyzed by the finite element simulation.

  • PDF