• Title/Summary/Keyword: Rotating Parts

Search Result 251, Processing Time 0.03 seconds

A Study on the Dynamic Material's Characteristics of Tungsten Alloy using Split Hopkinson Pressure Bar (홉킨슨 압축봉 장치를 이용한 텅스텐 합금의 동적 재료 특성에 관한 연구)

  • Hwang, Doo-Soon;Rho, Beong-Lae;Hong, Sung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.92-99
    • /
    • 2005
  • Tungsten heavy metal is characterized by a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as fur defense purposes(kinetic energy Penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program, the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

Conceptual Study and Design Ideas for SUAV Propulsion System (스마트무인기 신개념추진시스템 개념연구)

  • 전용민;정용운;양수석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2003
  • In this paper, the result of the conceptual study of a tipjet driven propulsion system is presented. The concept of a tipjet driven propulsion system is to employ tipjet as power source to drive a rotor Because the vehicle is supposed to takeoff and land vertically, a rotor system, which has tipjet nozzles, is adopted to fly like a helicopter. Exhaust gas, which is generated by an engine, Passes through an internal duct system and divided into four blade ducts. The design code is consists of two parts, engine model and internal duct model. Inside a rotating duct, compressible flow is affected by two additional force terms, centrifugal force and coriolis force and they govern the performance in rotary mode, The intention of this paper is to address the issues associated with sizing and optimizing configurations of a tipjet driven propulsion system especially in rotary wing mode.

A Deformable Spherical Robot with Two Arms (두 팔을 가지는 변형 가능한 구형로봇)

  • Ahn, Sung-Su;Kim, Young-Min;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1060-1067
    • /
    • 2010
  • In this paper, we present a new type of spherical robot having two arms. This robot, called KisBot, mechanically consists of three parts, a wheel-shaped body and two rotating semi-spheres. In side of each semi-sphere, there exists an arm which is designed based on slider-crank mechanism for space efficiency. KisBot has hybrid types of driving mode: rolling and wheeling. In the rolling mode, the robot folds its arms through inside of itself and uses them as pendulum, then the robot works like a pendulum-driven robot. In the wheeling mode, two arms are extended from inside of the robot and are contacted to the ground, then the robot works like a one-wheel car. The Robot arms can be used as a brake during rolling mode and add friction to the robot for climbing a slope during wheeling mode. We developed a remote controlled type robot for experiment. It contains two DC motors which are located in the center of each semi-sphere for main propulsion, two RC motors for each arm operation, speed controllers for each semi-sphere, batteries for main power source, and other mechanical components. Experiments for the rolling and wheeling mode verify the hybrid driving ability and efficiency of the our proposed spherical robot.

Fault localization method of a train in cruise (주행 중 철도 차량의 결함 위치 추정 방법)

  • Jeon, Jong-Hoon;Kim, Yang-Hann
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.903-912
    • /
    • 2007
  • Faults of rotating parts of a train normally generate unexpected frequency band or impulsive sound[1] which has a period when it moves with a constant speed. The former can be detected by the moving frame acoustic holography method, which visualizes sound field that is generated by a moving and emitting pure tone or band limited noise source. We have attempted to apply the method to the latter case: the periodic impulsive sound which generate different signal compared with what can be measured by the band limited noise. The signal to noise ratio which determines the success of early fault detection must also be studied with the impulsive and moving signal. This research shows how the problems related with these issues can be resolved. The main idea is that periodic impulsive signal can be expressed by infinite set of discrete pure tones. This enables us to obtain lots of holograms that visualize periodic impulsive sound field including noise by using the moving frame acoustic holography method. Therefore holograms can be averaged to improve the signal to noise ratio until having reliable information that exhibits where the impulsive sources are. Theory and experiment by using the miniature vehicle are described [Work supported by BK21 & KRRI].

  • PDF

CAVITATION ANALYSIS IN A CENTRIFUGAL PUMP USING VOF METHOD (VOF기법을 이용한 원심펌프 내의 공동현상에 관한 유동해석)

  • Lee, W.J.;Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Centrifugal pumps consume considerable amount of energy in various industrial applications. Therefore, improvement of the efficiency of these machines has become a major challenge. Cavitation is a phenomenon which decreases the pump efficiency and even causes structural demage. Hence, the goal of this paper is to investigate the cavitation problem in the single-stage and double-stage centrifugal pumps. The Volume of Fraction (VOF) method has been used for the numerical simulations together with Rayliegh-Plesset model for the gas-liquid two-phase flow inside the pump. In order to capture the turbulent phenomena, the standard k-${\varepsilon}$ turbulence model has been adopted, and the simulations have been done as unsteady cases. In addition, the motion of the rotating parts has been simulated using Multi Reference Frame(MRF) method. The results are presented and compared in terms of hydraulic head and NPSH for both the single-stage and double-stage pumps. The H-Q curves show the effects of cavitation on decreasing the pumps performances.

Analysis of Material Removal Rate of Glass in MR Polishing Using Multiple Regression Design (다중회귀분석을 이용한 BK7 글래스 MR Polishing 공정의 재료 제거 조건 분석)

  • Kim, Dong-Woo;Lee, Jung-Won;Cho, Myeong-Woo;Shin, Young-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.184-190
    • /
    • 2010
  • Recently, the polishing process using magnetorheological fluids(MR fluids) has been focused as a new ultra-precision polishing technology for micro and optical parts such as aspheric lenses, etc. This method uses MR fluid as a polishing media which contains required micro abrasives. In the MR polishing process, the surface roughness and material removal rate of a workpiece are affected by the process parameters, such as the properties of used nonmagnetic abrasives(particle material, size, aspect ratio and density, etc.), rotating wheel speed, imposed magnetic flux density and feed rate, etc. The objective of this research is to predict MRR according to the polishing conditions based on the multiple regression analysis. Three polishing parameters such as wheel speed, feed rates and current value were optimized. For experimental works, an orthogonal array L27(313) was used based on DOE(Design of Experiments), and ANOVA(Analysis of Variance) was carried out. Finally, it was possible to recognize that the sequence of the factors affecting MRR correspond to feed rate, current and wheel speed, and to determine a combination of optimal polishing conditions.

Dynamic Analysis of Rotating Bodies Using Model Order Reduction (모델차수축소기법을 이용한 회전체의 동해석)

  • Han, Jeong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF

A Destruction Pattern Analysis of a Turbo-Molecular Pump According to the Foreline Clamp Damage in an ICP Dry Etcher for 300 mm Wafers

  • Jeong, Jinyong;Lee, Intaek;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • We analyzed the destruction patterns of a turbo-molecular pump (TMP) resulting from its sudden exposure of a foreline to the atmospheric pressure due to a destruction of the foreline connecting clamp of an ICP dry etcher for 300 mm wafers during high-vacuum operation ($5{\times}10^{-6}$ Torr). Unlike in the case of view port's breakage, the TMP's rotor module was crashed inside the chamber. The primary damage resulted from the collision of the blades and stators, and the secondary damage resulted from the breaking of the rotor - driving shaft assembly. The fixing screws of the rotor and axial shaft were bent and broken when the TMP controller output the maximum current even after the crash event. Electrical power consumption analysis of the TMP power controller confirmed it. The stress distributions were analyzed by a finite element method using CFD-ACE+ multi physics software. Rotating inertia of each parts and kinetic energies were calculated as well. 68% of the rotational kinetic energy is deposited by the rotor - shaft module.

Identification of noise characteristics of an automobile alternator (승용차용 교류발전기의 소음 특성 규명)

  • 정진태;서상준;은희준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • Alternator noises are composed of magnetic noise, mechanical noise, and ventilation noise. These noises depend on the design of magnetic parts and fans, the machining accuracy of each element, and assembled conditions. In running alternator there are various exciting forces which can generate noises and vibrations. In order to identify the noise sources of the alternator, the characteristics of noises and vibrations are analyzed as rotating speed is increased. And the experiment for structural vibration is carried out. From results of experimental study, the noise sources are identified and their contributions to the overall noise level are investigated. Their results can lead the instruction to the noise reduction on the alternator.

Development of CAD Software for Automatic Design of Disk-Typed Cams-Part II : Computer-aided Analysis and Design Software (디스크형 캠의 자동설계용 CAD S/W 개발-Part II :CAD S/W 개발)

  • Son, Ju-Ri;Sin, Jung-Ho
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.155-161
    • /
    • 1989
  • Generally cam-follower systems consist of two elements: Cam is for rotating motion and follower for reciprocating motion. Depending on the shape of cam and type of follower, the motion of cam-follower system is determined. Thus design process and analysis process must be well defined. The design process means to find the coordinates of cam shape which can be defined the given motion of follower and the analysis process means to determine the motion curve of follower corresponding to the given cam based on the dimensions of a cam-follower system. This paper consists of two parts : One is for development of a numerical method for design and analysis of cam-follower systems, the other is for development of a CAD program and its application. As the second part of the paper, the structure of a CAD program is introduced. Four data files are used in the program where the design process and the analysis process are carried out interactively to en hence its availability to the industrial applications. The first part of the paper 'presents the iterative contact method which can determine the contact points and their angles between cam and roller.

  • PDF