• Title/Summary/Keyword: Rotating Machines

Search Result 187, Processing Time 0.025 seconds

A Novel Claw Pole Eddy Current Load for Testing a DC Counter Rotating Motor Part I: Construction

  • Kanzi, Khalil;Dehafarin, Abolfazl;Roozbehani, Sam;Kanzi, Majid;Vasheghani, Qasem
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.321-329
    • /
    • 2012
  • Providing variable load for testing a motor in high speed conditions is usually a difficult task. The eddy current brake can be used in application of load testing of motors. This paper deals with construction of a novel claw pole eddy current brake which is employed as a load for a DC counter rotating motor (CRM). These kinds of motors have two inner and outer shafts that rotate in opposite directions simultaneously, which are particularly suitable for under water propulsion systems. The prototype 45KW eddy current brake consists of two parts. One of them is installed on the inner shaft of the 60KW DC CRM and the other one is installed on its outer shaft. The simulation and experimental results with prototype brakes are also analyzed by using MATLAB/Simulink and the operational characteristic of the brake is demonstrated as a function of the motor speed and current of the magnetic poles.

Centrifugal Induction Coating of Metallic Powders

  • Natanovich, Gafo Yuri;Pavlovich, Kashitsyn Leonid;Aleksandrovich, Sosnovsky Igor
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.985-986
    • /
    • 2006
  • Principal peculiarities of technology for applying coatings of metallic powders on internal surfaces of hollow cylindrical parts by centrifugal method with induction heating from internal surface of part are examined. It is shown that most effective checking and regulating method of sintered powder layer is monitoring the high-frequency current generator power upon contactless pickup indications of external surface temperature of rotating part.

  • PDF

'Plastic' Axial Flux Machines: Design and Prototyping of a Multi-Disc PM Synchronous Motor for Aircraft Applications

  • Cerchio M.;Griva G.;Profumo F.;Tenconi A.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.207-214
    • /
    • 2005
  • After more than 100 years of development, rotating electric machines are a mature industrial product. Nevertheless, improvements are still possible for specific applications, and it is likely that the major evolution will be promoted by new materials and unconventional structures. Till now, plastic materials are an infrequent choice for the electric machines structural parts, but pioneering applications, such as aeronautical components, let some technological scouting: a low-weight/high-efficiency plastic axial flux motor for a solar flying platform is presented as an example of combined new-material/new-geometry development. The basic design aspects and the prototyping choices are presented and discussed together with the first experimental results.

Quasi-3D analysis of Axial Flux Permanent Magnet Rotating Machines using Space Harmonic Methods (공간고조파법을 이용한 축 자속 영구자석 회전기기의 준(準)-3D 특성 해석)

  • Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.942-948
    • /
    • 2011
  • This paper deals with characteristic analysis of axial flux permanent magnet (AFPM) machines with axially magnetized PM rotor using quasi-3-D analysis modeling. On the basis of magnetic vector potential and a two-dimensional (2-D) polar-coordinate system, the magnetic field solutions due to various PM rotors are obtained. In particular, 3-D problem, that is, the reduction of magnetic fields near outer and inner radius of the PM is solved by introducing a special function for radial position. And then, the analytical solutions for back-emf and torque are also derived from magnetic field solutions. The predictions are shown in good agreement with those obtained from 3-D finite element analyses (FEA). Finally, it can be judged that analytical solutions for electromagnetic quantities presented in this paper are very useful for the AFPM machines in terms of following items : initial design, sensitivity analysis with design parameters, and estimation of control parameters.

Off-Line PD Diagnosis for Stator Winding of Rotating Machines Using a UWB Sensor

  • Lwin, Kyaw-Soe;Park, Noh-Joon;Kim, Hee-Dong;Ju, Young-Ho;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.263-270
    • /
    • 2008
  • We studied partial discharge detection by sensing electromagnetic waves emitted from the partial discharge source in an HV Rotating Machine using a UWB sensor. In this study, we design a new type of compact low frequency UWB sensor based on micro-strip technology. We also perform many experiments of offline and dismantled testing compared with the existing HFCT on stator winding of the HV generator. We mention the detailed design of a new compact UWB sensor along with the time domain PRPD pattern and frequency domain results of partial discharge in the stator winding of a 6.6kV rotating machine by offline testing performed in a laboratory.

In-plane Stress Analysis of Relating Composite Disks (복합재료 회전원판의 면내응력 해석)

  • Koo Kyo-Nam
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.8-13
    • /
    • 2005
  • Rotating circular disks are widely used in data storage devices as well as in traditional industrial machines. Faster rotating speed is required in data storage devices for higher data transfer rate. In this Paper an application of composite materials to CD is proposed to increase critical speeds and the strength analysis was performed. A differential equation of displacement is derived for the analytic stress distribution of rotating polar orthotropic disk. The stress distributions for typical GFRP and CFRP disks and the maximum allowable speeds subjected to a constraint of tensile strength are presented in addition to polycarbonate disk. The results show that the application of CFRP to rotating disk can increase the maximum allowable rotating speed but this may not be applicable to GFRP disk.

A Useful Technique for Measuring the 3-dimensional Positioning of a Rotating Object (회전체의 효과적인 3차원 위치오차 측정방법)

  • Lee, Eung-Seok;Wi, Hyeon-Gon;Jeong, Ju-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.918-924
    • /
    • 1997
  • A method for measuring the accuracy of rotating objects was studied. Rotating axis errors are significant; such as the spindle error of a manufacturing machine which results in the surface roughness of machined work pieces. Three capacitance type displacement sensors were used to measure the rotating master ball position. The sensors were mounted to the three orthogonal points on the spindle axis. The measurement data were analyzed and shown for rotating spindle accuracy, not only for average roundness error but also for spindle volumetric positional error during the revolutions. This method is simple and economical for industrial field use with regular inspection of rotating machines using portable equipment. Measuring and analyzing time using this method takes only a couple of hours. This method can also measure microscopic amplitude and 3-dimensional direction of vibrating objects.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

A Study on Performance Characteristics of Super-mirror Face Grinding Machine Using Variable Air Pressure (가변 공기압력 초경면 연마기의 성능 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The comparisons of performance characteristics between the super-mirror face grinding machine using variable air pressure developed in this laboratory to grind precisely the sliding face of a surface hardened workpiece with thermal spray and the conventional one are investigated by measuring the surface roughness and hardness for a SCM440. To process variously workpiece according to shape, size and materials, the rotating and contacting forces of the developed grinding machine can be changed by air pressure. The surface roughness of processed workpiece can be also attained to state of mirror face by grinding precisely the sliding face with changing the rotating speed of diamond wheel. It is possible to be attached to the various machine tools because the super-mirror face grinding machine using variable air pressure is a small size. The grinding efficiency is elevated because it can be worked by two or more grinding machines attached to concurrently a machine tool for the large workpiece. In this study, results show that the cusp height of the super-mirror face grinding machine for the particle size of 100 and $1500No./mm^2$ is lower than that of the conventional one because the vibration is reduced by rotating very fast the diamond wheel with a pressed air and it can be processed by rotating the diamond wheel with a constantly varied air pressure perpendicular to workpiece surface, and that the workpiece in the super-mirror face grinding machine for the particle size of $3000No./mm^2$ can be processed to state of mirror face that is rarely seen by the cusp height. It is also found that the surface hardness of both the conventional and the super-mirror face grinding machines are increased as the particle size of diamond wheel is reduced, and the surface hardness of the super-mirror face grinding machine is HRC 1.1 ~ 1.8 higher than that of the conventional one.

Improvement of Degradation Characteristics in a Large, Racetrack-shaped 2G HTS Coil for MW-class Rotating Machines

  • Park, Heui Joo;Kim, Yeong-chun;Moon, Heejong;Park, Minwon;Yu, Inkeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1166-1172
    • /
    • 2018
  • Degradation due to delamination occurs frequently in the high temperature superconductors (HTS) coil of rotating machines made with 2nd generation (2G) HTS wire, and the authors have observed other similar cases. Since an HTS field coil for a rotating machine is required to have stable current control and maintain a steady state, co-winding techniques for insulation material and epoxy resin for shape retention and heat transfer improvement are applied during coil fabrication. However, the most important limiting factor of this technique is delamination, which is known to be caused by the difference in thermal expansion between the epoxy resin and 2G HTS wire. Therefore, in this study, the experimental results of mixing the ratio of epoxy resin and alumina ($Al_2O3$) filler were applied to the fabrication of small and large test coils to solve the problem of degradation. For the verification of this scheme, eight prototypes of single pancake coils with different shapes were fabricated. They showed good results. The energization and operation maintenance tests of the stacked coils were carried out under liquid neon conditions similar to the operation temperature of an MW-class rotating machine. In conclusion, it was confirmed that the alumina powder mixed with epoxy resin in an appropriate ratio is an effective solution of de-lamination problem of 2G HTS coil.